Homogenous REBCO Coated Conductor Production Developed by Using IBAD and Hot-wall PLD Process

Yasuhiro lijima

Fujikura Ltd.

We appreciate Prof. T. Kiss at Kyushu Univ. and Prof. S. Awaji at Tohoku Univ. for collaboration to sample evaluation. A part of results was also performed at the High Field Laboratory for Superconducting Materials, IMR, Tohoku University. They also include results obtained from *"Promotion Technology Development for Realization of HTS Applications(2016-2020)"* being consigned or subsidized by the New Energy and Industrial Technology Development Organization (NEDO).

Fujikura's 2G HTS wires processed by IBAD/PLD method

<Schematic of 2G HTS wire>

Developed in NEDO/METI programs

"super-GM" (1989-1999)

"Fundamental Technologies for Superconductivity Applications I/II" (1998-2007)

"Project to Promote Commercialization of High-Temperature Superconductivity Technology" (2016-2000)

Drastic improvement of industrial excimer laser technology for semiconductor annealing process (2000 ~) Reduction of maintenance cost

High field applications of IBAD/PLD REBCO coated conductor

Commercial Practical device

G Roth: "Ultra-High Field Magnets at Bruker" UHF Workshop at NIH, Nov. 12-13, 2015

https://ir.bruker.com/press-releases/press-release-details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx

Compact fusion reactor **Big R&D prototype**

REBCO wire demand up to 10000s km/prototype reactor

Toroidal field ~9T (ITER/DEMO ~6T)

Small diameter, lower cost thinner shielding blanket than conservative design

http://news.mit.edu/2015/small -modular-efficient-fusion-plant-0810

<u>High **Productivity** of wire</u> required with <u>high in-field I_c at 20 K, 20 T, within</u> affordable cost and I_c variations

lower neutron radiation damage favorable

Contents

□ Coated conductors by IBAD/Hot-wall PLD process

- Advantage of IBAD/Hot-wall PLD process:
 - □ Very high growth rate, with controllable pinning defects
 - **Growth stability of thick EuBCO-BHO** with high J_c in wide temp. field range
- Line up of C.C. @Fujikura Ltd.
- Gaps in Technology
- Cost, volume projections, Supply Chain issues

□ Current status of Fujikura C.C. uniformity

- 1km long uniformity improvement for varied width
- Mechanical reliability improvement

Desired advancements in conductor research

- Internally pursued improvements with customer collaborations
- Potential areas of collaboration with research institutes, etc.

□ Summary Fujikura

4

Growth structure & J_c -B- θ properties of BMO-EuBCO by PLD

PLD: Fast and Controllable non-equilibrium process

rapid and fine evaporation by UV pulse laser

- Very high supersaturated growth with high adatom mobility & low compositional fluctuation
 - Very fast growth rate with good textured matrix
 - Dense small size secondary growth and defects suitable for flux pinning

EuBCO-HfBaO₃

Scatterd short nanorods in high-growth rate FAST samples

more isotropic property In wide temperature and field range

Reproducible uniformity pursued by Hot-wall PLD

Key issues for BMO doped REBCO wire : "High in-field *I*_c & Reproducibility" "Long-length & Longitudinal *I*_c uniformity"

Additional deposition parameters: BMO nanorod structure

Hot-wall PLD system has furnace-like stable substrate heating

RE elemental dependent growth stability for BMO-REBCO

FIB-SEM 3D observation on misoriented grains (mainly a-axis aligned normal) for thick BMO-REBCO films

BaHfO-GdBaCuO

https://www.jfcc.or.jp/re sult/16r33.html

BaHfO-EuBaCuO

D. Yokoe et al., Supercond.Sci.Technol. **33** (2020) 024002 T. Yoshida et al., Physica C **504** (2014) 42

Typical J_c -B characteristics for BHO-EuBCO and pristine GdBCO, YBCO films

Thickness dependence for in-field *I_c* properties of BHO-EuBCO

B [T]

Thickness dependent tensile strength

The FESC (BMO-doped EuBCO) had,

- slightly smaller e_{irr} value due to the thicker REBCO layer: 2.5 μ m.

- The REBCO thickness dependence of \mathbf{e}_{irr} is due to the volume effect, which is general phenomena in ceramics. $\bar{\varepsilon} = \varepsilon_0 \Gamma \left(1 + \frac{1}{m}\right) \left(\frac{V}{V_0}\right)^{-\frac{1}{m}} \propto V^{-\frac{1}{m}} \propto (\text{REBCO thickness})^{-\frac{1}{m}}$

Typical specifications of 2G-HTS wire at Fujikura

Droducto	Width	Thickness	Substrate	Stabilizer	Critical Current [A]	
Products	[mm]	[mm]	[µm]	Cu [µm]	77K, S.F.	20K, 5T ^{*3}
FYSC-SCH04	4	0.13	75	20	≥ 165	368
FYSC-SCH04(40)	4	0.17	75	40	≥ 165	368
FYSC-SCH12	12	0.13	75	20	≥ 550	1,104
FESC-SCH02 *2	2	0.11	50	20	TBD	(257)
FESC-SCH03 *2	3	0.11	50	20	≥ 63	497
FESC-SCH04 *2	4	0.11	50	20	≥ 85	663
FESC-SCH12 *2	12	0.11	50	20	≥ 250	1,990

(A/C

ち

5

्व

Self & in-field I_c distribution of 4 mm^w EuBCO-BHO wire

rot-to-rot variation of in-field I_c / I_c (77 K, s.f.)

Good correlation to self field I_c and infield I_c observed for both EuBCO+BHO and pristine GdBCO

◇O measured at Fujikura, and exploited values with Ic
 □ in-field Ic measured at Tohoku university

Gaps in technology

·Jc-B-T enhancement	strong enough	desired for higher throughput	
 piece length (determined by homogeneity) 	0.3 – 1 km	~5km ideally in future	
•mechanical reliability	enough tensile/bend/ delamination strength	coiling results accumulation desired	
·cross-sectional dimension	width 2~12mm	thinner thickness desired	
·cost down (≒productivity)	still higher than Nb ₃ Sn		
moderate scale driven mode DC magnet			
 superconducting joints 	required for PCM applications as MRI, etc.		
•coil protection for large scale	must be achieved for large scale, as fusion,		
 radiation damage 	must be evaluated for compact fusion		
 AC loss/screening current lower inductance cabling 	desirable for AC/ very large scale applications		

Fujikura

Cost, volume projections, Supply Chain issues

□ Cost, volume projections – 3 years, 5 years

- Cost: approaching to high spec Nb₃Sn wires in future
 - □ Running cost for excimer laser drastically decreased in past 20 years
- Volume: under investment for double capacity
- **Supply Chain issues raw materials, equipment**
 - Optimistic
 - Raw materials:
 - □ rare earth elements :widely used in fluorescent substance, etc.
 - □ Ni-based alloys : widely used in chemical/nuclear plants, etc.
 - □ Inert gases: temporary shortage observed by war
 - Vacuum equipment: widely used in semiconductor or FPD industry including excimer laser sources

13

I_c uniformity of BHO-EuBCO wire of 12 mm^w

Magnetization measurement of longitudinal I_c distribution for 1 km class wire

Example data of longitudinal I_c distribution of 4mm-wide tape

Measured by Current conduction measurement every 4.7 m (with AP / FESC-SCH04)

Example data of longitudinal I_c distribution of 3mm-wide tape

3 mm-wide tape: FESC-SCH03

Example data of longitudinal I_c distribution of 2mm-wide tape

2 mm-wide tape: FESC-SCH02

4-terminal method current conduction measurement at every 4.7 m

■ Magnetic measurement @TapestarTM (2mm-wide with AP / FESC-SCH02)

Delamination strength distribution evaluated by impregnated coils

<Vertical stress test by thermal stress inside impregnated coil controlled by OD/ID ratio >

number of heat cycles

Desired advancements in conductor research – prioritize

Tr	nternally pursued with customer colla	borations
·Jc-B-T enhancement	HTS thickness reduction	critical requirement from parameters magnet design &
 piece length (determined by homogene 	higher production yield eity) ~1km	wire \
•mechanical reliability	coiling results accumulation	samples
·cross-sectional dimension	Substrate thickness reduction	
 •cost down (≒productivity •superconducting joints 	 production sequence improvem +Jc-B, length enhancement 	nent × × feedback
 radiation damage 	neutron/proton irradiation resul useful for compact fusion	Its Potential areas of
•coil protection for large scale protection tests by moderate sc		cale coils collaboration with research institutes, etc.
 AC loss/screening current lower inductance cabling 	striation, assembled cables	

Fujikura

Summary

□ Coated conductors by IBAD/PLD process

- Suitable for mass production of recent demands from high field application
 PLD process: non equilibrium, very high growth rate, with controllable pinning defects
- Current status of Fujikura REBCO C.C. by Hot-wall PLD
 - Growth stability of thick EuBCO-BHO better than GdBCO-BHO, pristine YBCO
 - Good uniformity obtained in 1km long for 4 mm wide, 300m long for 2mm wide
- Gaps in technology: mostly completed for moderate scale DC magnet but cost

□ Cost, volume projections, Supply Chain

- \Box Cost: approaching to high spec Nb₃Sn wires in future
- □ Volume: invested for double capacity, future projection depends on top management
- □ Supply chain: generally optimistic

Desired advancements in conductor research

- □ 1st priority: cost reduction by long length homogeneity & processing modernization
- □ 2nd :Trade-off judgement of smaller cross section, and mechanical reliability
- □ Neutron radiation damage evaluation
- Coil protection, Assembled wire, for large current, AC, etc.

Potential areas of collaboration with research institutes, etc.

END

Thank you for attention

21