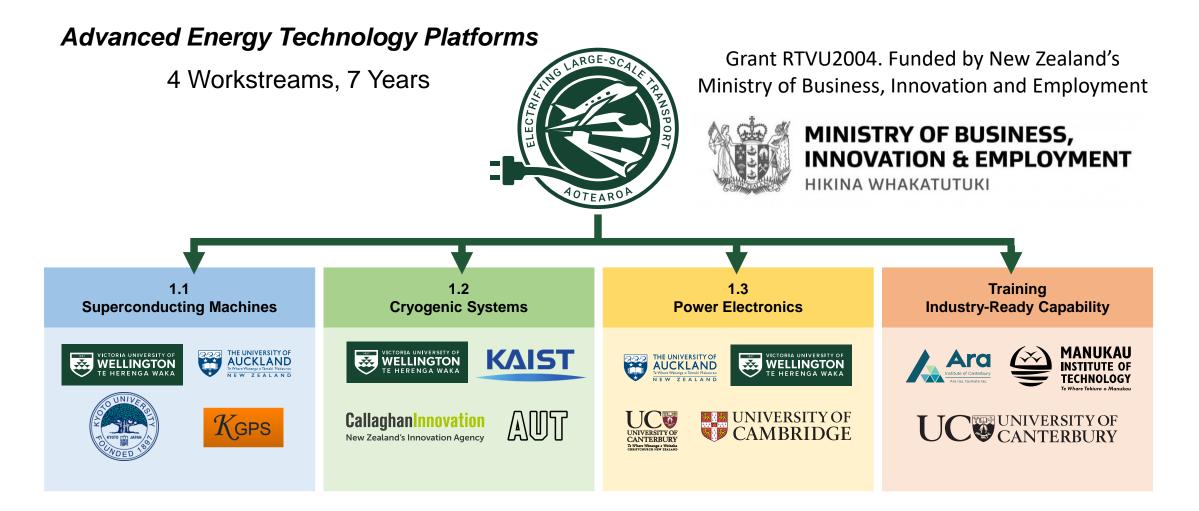
Paihau-Robinson **Research Institute**

High power density electric motors for large-scale transport

R.A. Badcock, H.W. Weijers, A. Caughley, K. Hamilton, D. Thrimawithana, A. Lapthorne, S. Singamneni, G. Lumsden

July 2021

Acknowledgement:


We are grateful to the MBIE Advanced Energy Technology Platforms programme RTVU2004 "High power electric motors for large-scale transport" that has enabled much of this work

Paihau – Robinson **Research Institute**

The AETP Programme – Workstream Collaboration

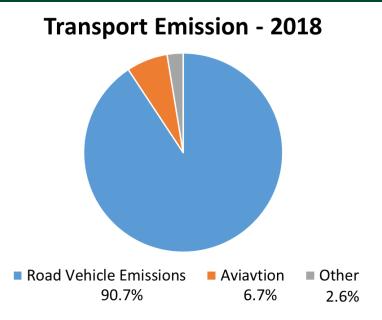
Paihau – Robinson Research Institute

The AETP Programme – Connected and Engaged

Victoria University Wellington – Superconducting Application Team

Lead Agency: Robinson Research Institute

An applied science and engineering institute



Professional team that have gained New Zealand a reputation for excellence in the application of superconductivity for MRI, Electrical Machines, Magnets and Space

New Zealand Context

- New Zealand is both *blessed by our* resources and cursed by our geography!
 - We have truly sustainable, and renewable, electricity supply (>90%)
 - Transport accounts for about 20% of NZ's greenhouse gas emissions (of which 85% comes from fossil fuels)
 - Our transport routes are long and skinny
 - The only current rapid transport option is aviation
 - Our aviation routes are short-hop, barely reaching cruise altitude

- Electric aviation could make an enormous impact on our fuel imports and greenhouse gas emissions
 - What power do we transfer? How do we store the energy?

https://www.airbus.com/innovation/zero-emission/electric-flight/e-fan-x.html

https://www.electricair.nz/

ElectricAir Fly the first and only electric plane in New Zealand

AIRBUS

FEANX

197

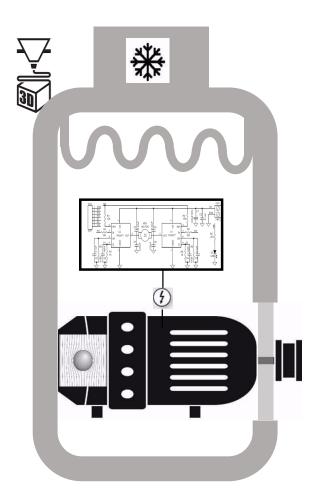
EAL

Book

Paihau – Robinson Research Institute

Will electric aviation also use hydrogen?

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation J3Or1A-03 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.


The AETP Programme – Workstreams

AETP - Multidisciplinary research at the leading edge

Technology problem Low weight, high-power optimization for whole system

1. Fully Superconducting Machines

new motor topologies combining HTS stator and rotor windings

2. Cryogenic Cooling Systems

- optimized mechanical cryocoolers
- additively manufactured heat exchangers
- whole-of-system modelling

3. Lightweight Power Electronics

- new concepts for size and weight optimization:
- GaN-based cryogenic electronics
- packaging/interconnects, and cooling options.

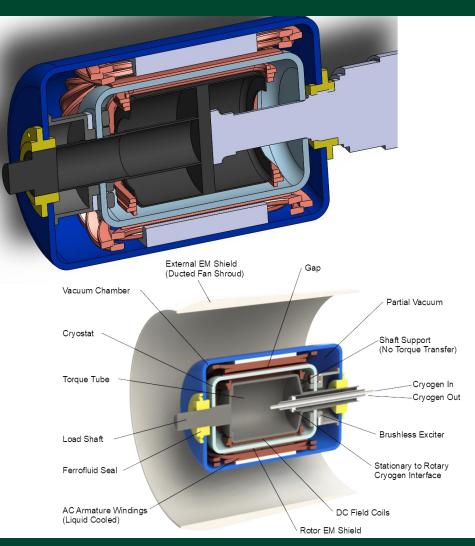
4. Industry-ready Training Strategies

The AETP Programme – Workstreams

Paihau – Robinson Research Institute

The AETP Programme – Workstream 1

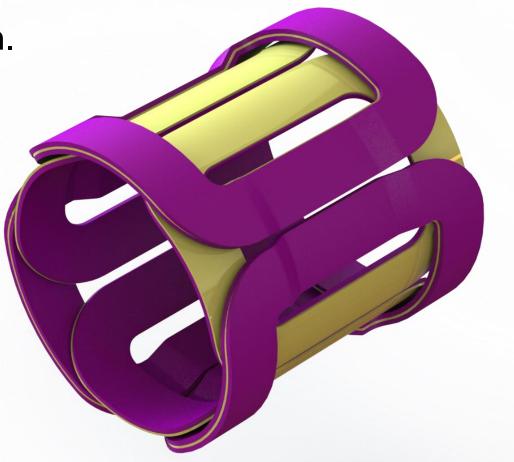
- Superconducting (HTS) machine design and prototyping
- Superconducting stator and rotor windings optimisation
- Contactless excitation of the rotor field windings (flux pumps)
- Loss measurements of superconducting windings
- Aircraft propulsion system simulation to quantify emissions benefits


CEC/ICMC J3Or1A-03 [Invited]

Robinson Research July 2021

HTS Machines – Fully Superconducting

3 MW Aircraft Motor design


- 4500 RPM, 100 kW Demonstrator.
 - High Specific Power: > 20 kW/kg including cryocooler
 - $T_{amb.} = 300$ K, power density = 27 kW/kg, Efficiency = 97.5%
 - $T_{amb.} = 120$ K, power density = 29 kW/kg, Efficiency = 99.2%
- MgB₂ toothless saddle armature windings.
- ReBCO tape saddle coil field windings
- Several options for cryo-system including internal cryocooler

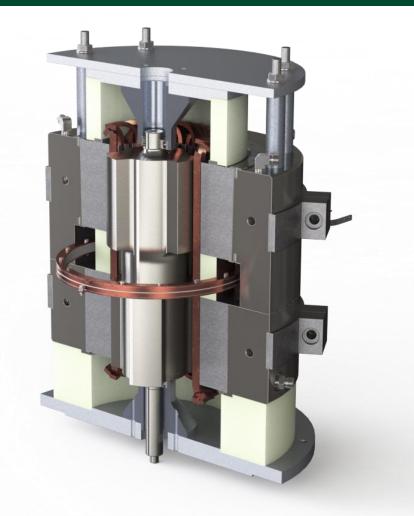
Stator Optimisation - MgB₂ Armature Windings

- Continuous stator toothless design.
- Small outer radius.
- High current density.
- High magnetic field output.
- Low AC Loss.
- Iron teeth not required.

HTS Machines - High TRL AC Homopolar Motor

- High speed: 20,000 30,000 RPM.
- Non-rotating HTS field coils.

- Flux pump demonstrator.
- HTS Dynamo demonstrator.
- Fibreoptic monitoring demonstrator.



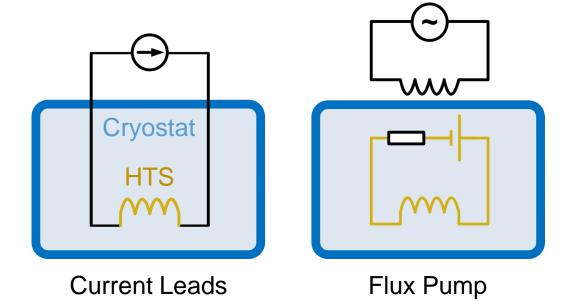
HTS Machines - High TRL AC Homopolar Motor

Homopolar architecture:

- Single piece steel rotor.
- Stationary ReBCO Coil.
- Partially laminated steel stator.
- Hybrid ceramic vacuum bearings.
- Ferrofluid vacuum coupling.

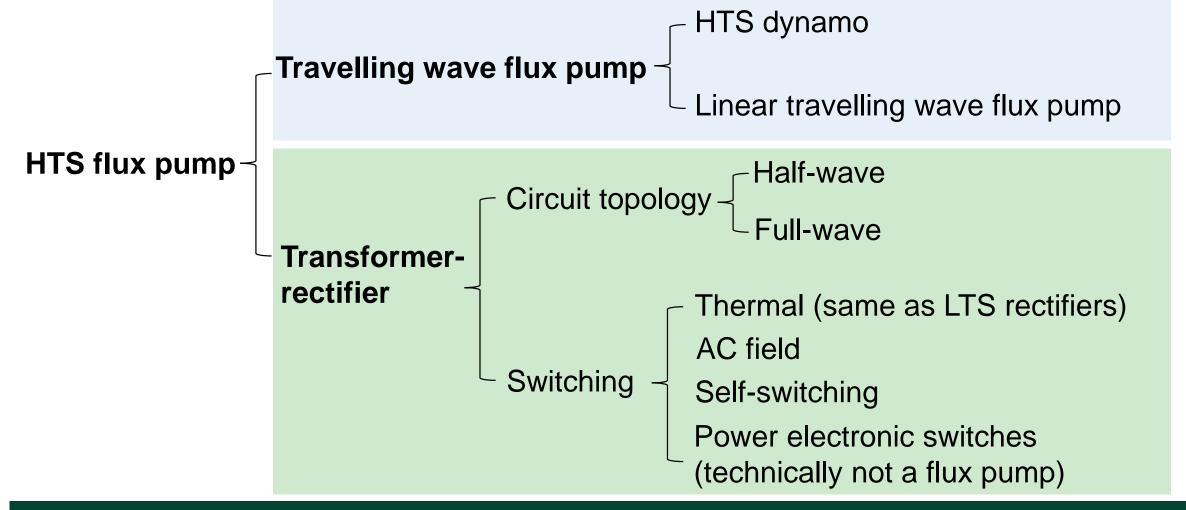
Non-rotating HTS coil eliminates complicated cryogenic and high current rotating connections.

Superconducting Flux Pumps

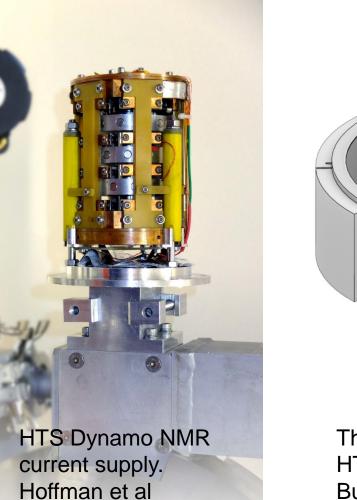

- Flux Pumps energise superconducting circuits *wirelessly*.
- Motivation:
 - How significant are the motor performance improvements when using flux pumps to supply motor field coil current?
 - Build flux pumps as current supplies for superconducting motors in marine and aerospace applications.

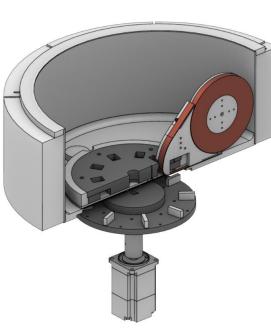
Superconducting Flux Pumps

- Fully superconducting power supplies.
- Kiloamp current output demonstrated.
- No feedthrough:
 - Power supplied wirelessly through the cryostat wall with no thermal conduction.
- Quasi-persistent HTS circuit current:
 - Constant HTS current operation only requires small power input to flux pump.
- Reduction in Cryogenic Load:
 - No thermal conduction path.
- Rotating (HTS Dynamo) or solid state.



Paihau – Robinson Research Institute

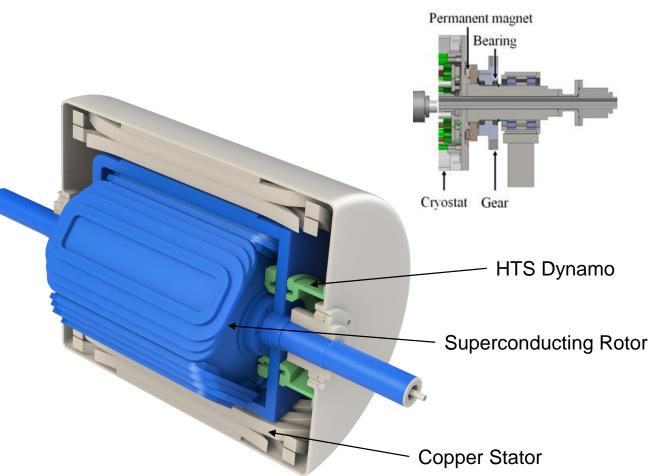

Superconducting Flux Pumps



Superconducting Flux Pumps – Dynamos

Through cryostat wall HTS Dynamo. Bumby et al 1 kW generator contactless exciter Kim et al

Kiloamp Squirrel Cage HTS Dynamo Hamilton et al

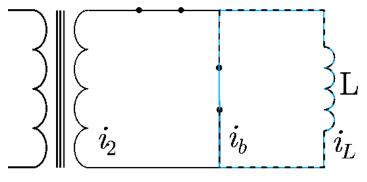


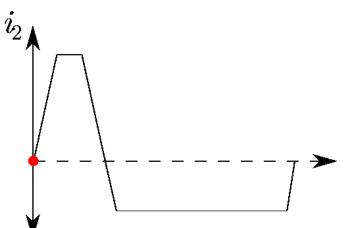
Superconducting Flux Pumps – for Aircraft

- Dynamo design
- Wireless energisation of superconducting coils.
- Current delivery across rotating joint.
- Well suited to motors with superconducting field coils.
- Miniature PSU.

Superconducting Flux Pumps – for Aircraft

- Measured HTS Dynamo performance:
 - Low losses compared to copper leads.
 - Low weight compared to DC supply.
 - Loss remains low at high current.
 - Weight remains low at high current.
- In aircraft, weight becomes important:
 - Low loss = Low cryocooler load and weight.
 - Low loss and low weight = Reduced fuel use.

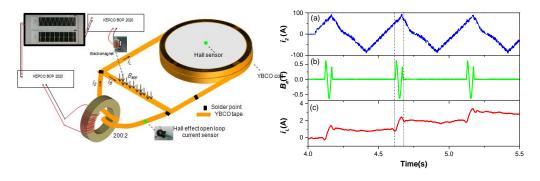


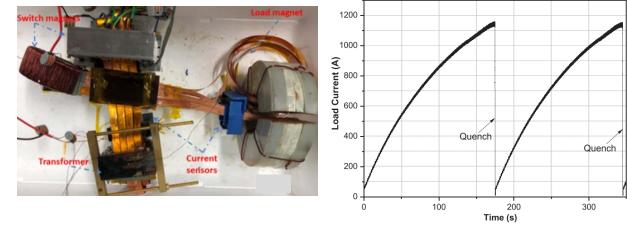


Superconducting Flux Pumps – Solid State

Transformer-Rectifier

- AC current -> DC voltage rectifier
- Switching by variable resistance [2]
- Superconducting properties provide voltage


[2] J. Geng et al, Appl. Phys. Lett., 108 (26), 262601 (2016).



Superconducting Flux Pumps – Solid State

AC field switched rectifiers

First field switched HTS rectifier [1]

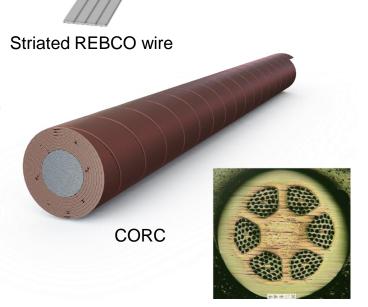
First reported HTS rectifier that exceed 1 kA [2]

The device uses ac field to generate dynamic resistance in the superconducting switches, achieving accurate flux pumping.

[1] Geng et al, 107 (14), 142601, 2015[2] Geng et al, SUST 32 (7), 074004, 2019

Stator Optimisation - Research Aims

- Demonstrate and test low-loss twisted MgB₂ and Bi2212 superconducting wires incorporating ultra-fine (~20 um) filaments.
- Develop new finite element modelling techniques to predict the AC stator losses in a synchronous superconducting motor, and validate through experimental measurements of stator windings.
- Design a concept first-in-world fully superconducting synchronous machine (targeting 3 MW, 4 pole, 4500 rpm); and, for the first time, build a 100 kW all-superconducting machine.
- Test the dynamic performance of an experimental-scale (< 500kW) motor at the CHEETA test pit at University of Illinois and the AFRL high dB/dT spin test rig in Dayton Ohio.



Loss Measurements

Reducing AC loss in stator windings is one of key issues to achieve practical fully – superconducting rotating machines.

Conductor candidates

- REBCO coated conductors
 - Large achievable filament size using laser ablation (>100 μm)
 - Degradation of critical current density due to laser ablation
 - Difficulty in making saddle-shaped coils
- MgB_2 wires
 - Fine filament size (< 10 μm)
 - Round shape wires easy to make saddle coils
 - With a T_c of 39 K, MgB2 wires are suitable to be operated at 20 K or LH2 temperature

MgB₂ (Hyper Tech Website)

No experimental AC loss data exist for MgB2 wires at high magnetic field at 20 K.

Loss Measurements

Objectives for MgB₂ Stators

□ Experiments

- An in-house AC loss measurement system is being built (details in next slide)
- AC loss measurements in low-loss MgB₂ wires/coils at various operating temperatures at high magnetic field In-house built system
- AC loss measurements in low-loss MgB₂ wires/coils at various operating temperatures under rotating magnetic field – in collaboration with AFRL/OSU
- Coupling loss measurements in low-loss MgB₂ wires at LHe in collaboration with Kyoto University
- Hysteresis loss measurement in low-loss MgB₂ wires/coils at various operating temperatures using PPMS
- Simulations
 - 3D AC loss simulation in MgB₂ wires considering full 3D multi-filamentary geometry in collaboration with Cambridge University
 - 2D AC loss simulation in a fully superconducting 3 MW motor using MgB₂ wires in the stator windings and REBCO conductors in the rotor windings – in collaboration with Cambridge University/Swarn Kalsi (KGPS)

Loss Measurements

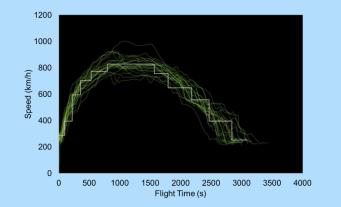
AC loss rig

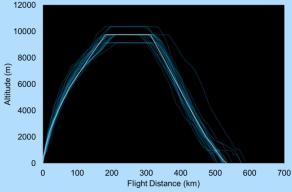
- □ AC magnetic field: ~ 500 mT peak
 - (Copper magnet cooled by liquid nitrogen)
- Temperature range for superconductor samples: 15 K 80 K (He gascooled using AL600 cryocooler)
- □ Frequency range: 200 Hz
- □ Type of measurements:
 - Magnetization loss
 - Dynamic resistance/loss
- □ Sample DC current: ~ 500 A
- □ Superconductors: MgB2, REBCO, Bi2212, Iron based SCs
- □ Sample envelope: 40 mm (W) x 250 mm (L) x 20 mm (H)

AL600 cryocooler (CRYOMECH)

Propulsion System Simulation

- Quantifying carbon emission reduction potential of electric aviation propulsion.
 - What is the best approach to mitigate carbon emissions from aviation?
 - Modular framework to quantify the impact of new electric propulsion architectures on emissions from real long- and short-haul flight profiles.
 - Inform aircraft developers, owners and regulators of the relative benefits of pursuing either 'incremental' or 'step-change' approaches to reducing CO₂ emissions from the aviation sector.

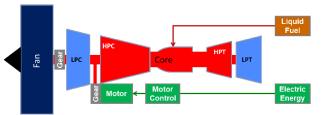




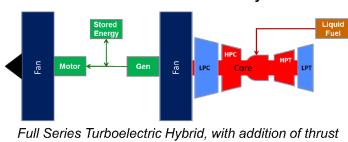
Propulsion System Simulation

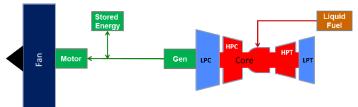
Example route tested with simulated 737:

- Estimated fuel burn for 737 AKL-WGN within 1% of AirNZ reported fuel burn.
- Flight Profile then used to assess potential reductions if electric.

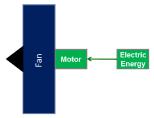


Propulsion System Simulation


- Modular software powertrain models.
- Can simulate various powertrain layouts.


All thrust from main fans, fan power from liquid fuel through GT and battery though LS motor

Partial Series Turboelectric Hybrid


from GT LS fan

Full Series Turboelectric Hybrid

GT creates electric power from liquid fuel, electric power distributed to multiple electric fans for thrust, battery used load leveling

All Electric (not a Hybrid)

Electric power from battery distributed to multiple electric fans for thrust

Parallel Hybrid Propulsion System for a Regional Turboprop: Conceptual Design and Benefits Analysis, T.Spierling, C.Lents, United Technologies, EATS 2019

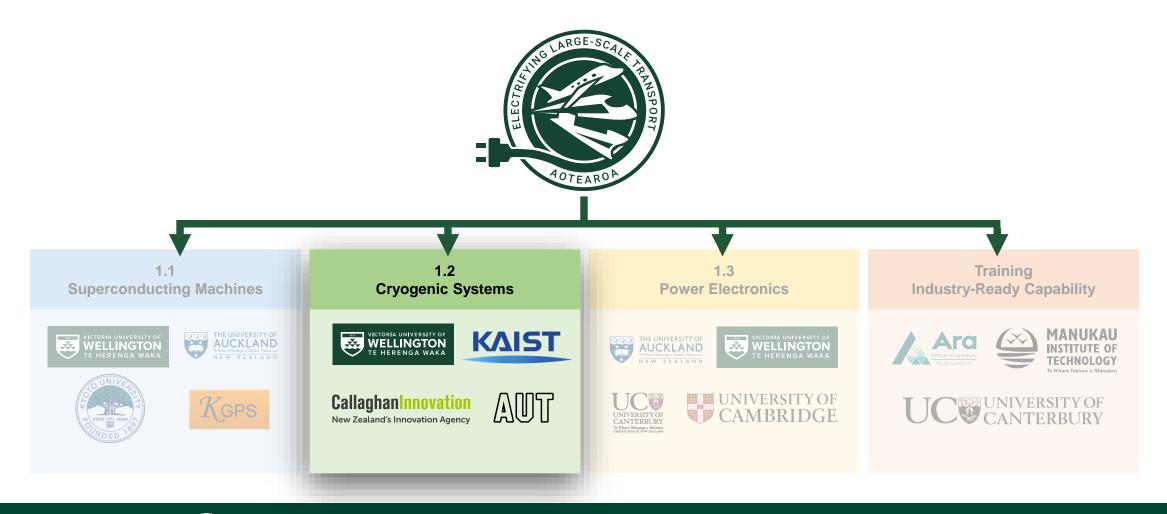
Novel HTS Machine Subcomponents

• HTS bearings: Superconducting HTS bearings

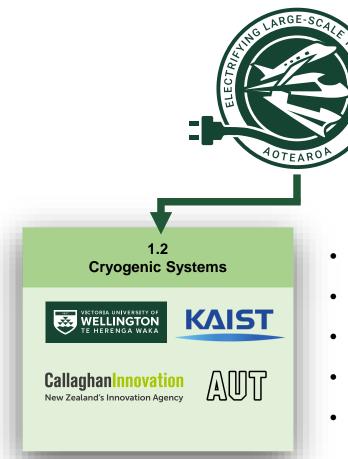
- Robinson is investigating novel processing routes to produce shaped bulks.
- We will apply this new capability to develop entirely novel hybrid-bearing designs.

High-saturation-field soft ferromagnets

- Field strengths in machines are limited by the 1.5T saturation field of the rotor material.
- We are experimentally screening sputtered thin films for $B_{sat} > 2.3T$.

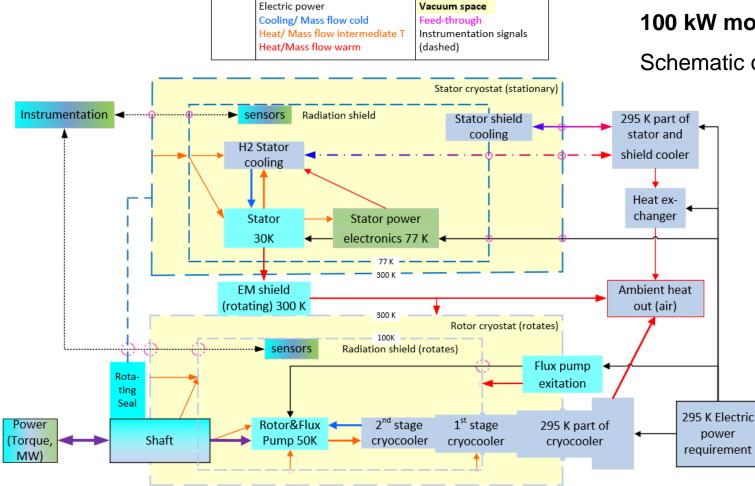

Quench prevention: Fibre optic early quench detection

- Distributed sensing of local temperature increases which cause a risk of quench.
- Robinson is developing a novel optical fibre system backed up by our improved AC loss model.



The AETP Programme - Workstreams

The AETP Programme – Workstream 2



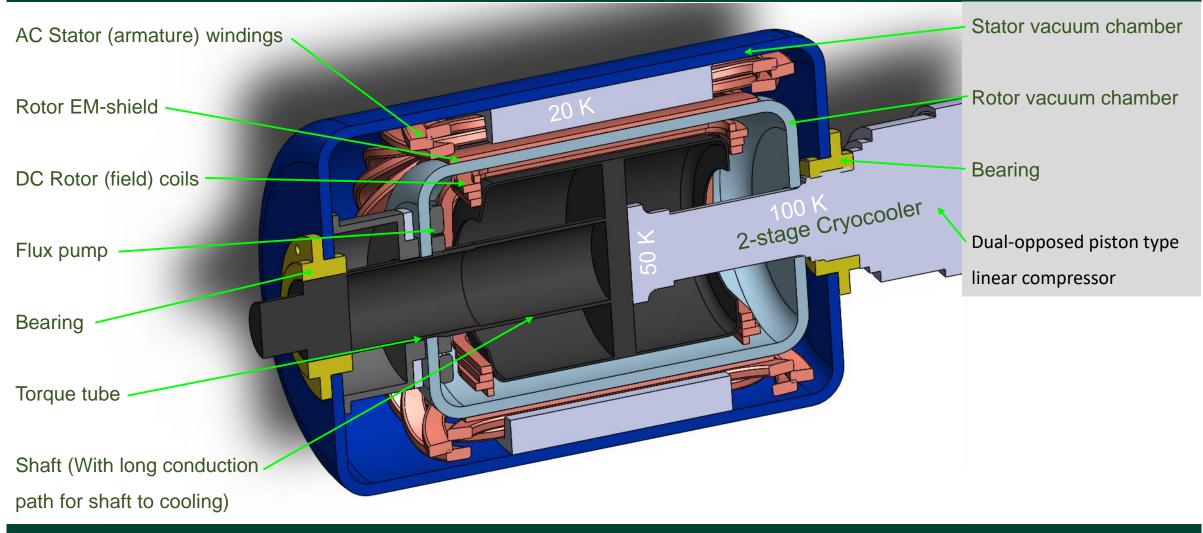
- System optimization for low mass and high efficiency
- Cryogen-cryogen heat exchanger performance
- Additive manufacturing with cryogenic materials
- Novel cryo-cooler development for aero
- Exploiting LH₂ fuel synergies

The AETP Programme – System Modelling

Crvostat wall

Mechanical power/Torque

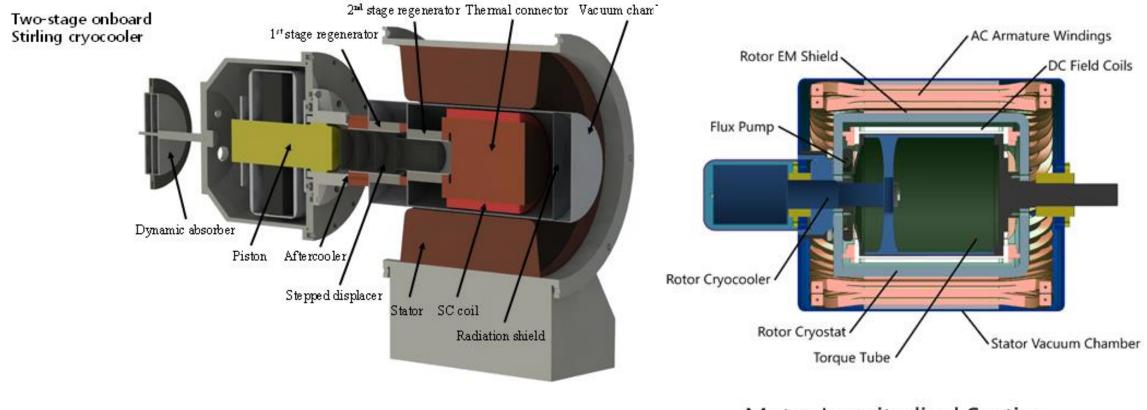
Legend


100 kW motor with superconducting stator

Schematic of flow of energy between components

- Liquid Hydrogen cooling for stator at 20 K
- Rotating 2-stage cryocooler for Rotor and Flux Pump
- Stepping stone for 3 MW design

The AETP Programme – Rotating Cryocoolers (Slide option1)



CEC/ICMC J3Or1A-03 [Invited] Robinson Research July 2021

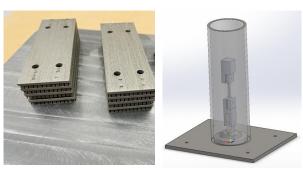
35

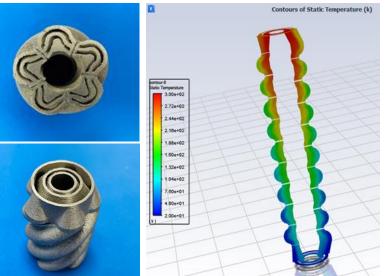
The AETP Programme – Rotating Cryocoolers (Slide option2)

Cryocooler conceptual schematic

Motor Longitudinal Section

CEC/ICMC J3Or1A-03 [Invited] Robinson Research July 2021



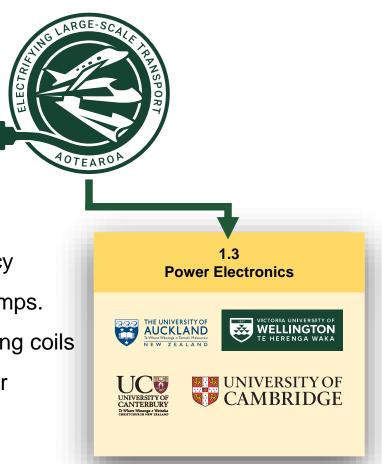

36

The AETP Programme – Additive manufacturing

Progress is planned on 3 fronts:

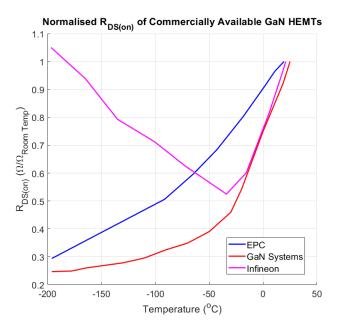
- Evaluation of additive manufacturing solutions for counterflow heat exchangers
- 2. Characterisation of additively manufactured materials in cryogenic and trans-cryogenic environments
- 3. Exploring the development of complex geometrical forms for efficient thermal management and structural support in the motor.

: :



The AETP Programme - Workstreams

The AETP Programme – Workstream 3


- Wide-gap GaN devices for weight and efficiency
- Characterising silicon systems at cryogenic Temps.
- Switched-mode motor drives for superconducting coils
- High-power, lightweight, compact controllers for aerospace motors



Light Weight Converters for HTS Machines

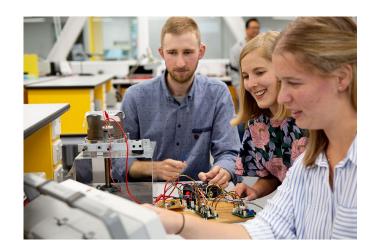
- Research program aims to investigate system level benefits of operating power electronics at or near cryogenic temperatures
 - Investigating operation of commercial WBG switches as well as passive and active devices at low temperatures
 - Developing new WBG switches and passives with improved properties
 - Developing converters that can operate at low temperatures to drive fully superconducting motors
 - Investigating reliability of these novel solutions

The AETP Programme - Workstreams

Paihau – Robinson Research Institute

The AETP Programme – Workstream 4

- Curriculum development
- Preparing industry for future technologies
- Supporting diversity in STEM


Curriculum Development

- New course for the Electrical Engineering Strand of the NZ Diploma in Engineering with the aim of upskilling future technicians
- Level 6 course with the following learning outcomes
 - Demonstrate an understanding of superconductor theory
 - Demonstrate knowledge of cryogenic systems
 - Demonstrate knowledge of rotating electric machine used in high power to weight applications
 - Demonstrate an understanding of wide band-gap device technology
 - Demonstrate knowledge electric drive topologies.

2.3 ELECTRICAL ENGINEERING STRAND

Year 1 – Levels 4 and 5				Year 2 – Levels 5 and 6					
Engineering Fundamentals		Power Engineering L5		Electrical Machines		L5	Engineering Project (Electrical		
	L4						L6		
DE4101		DE5401		DE5404			DE6102		
Common Compulsory		Power Compulsory		Power Compulsory			Common Compulsory		
Engineering		Introduction to NetworksL5		PLC Programming 1 L5		Engineering Management			
Mathematics 1	L4	OR						L	.6
DE4102		CAD Electrical	L5				DE6101		
Common Compulsory		DE5408 or DE5423		DE5402			Common Cor	npulsory	
		Compulsory Elective		Power Comp	oulsory				
Technical Literacy	L4	Electrical and Electro	nic	Elective	L5 or L6		Elective	L6	;
		Applications	L4						
DE4103		DE4402							
Common Compulsory		Electrical Compulsory	/						
Electrical Principles	L4	Electronic Principles	L5	Elective	L6		Elective	L6	_
DE4401		DE5403							
Electrical Compulsory		Electrical Compulsory							
Year 1 = 120 credits				Year 2 = 120 credits					

NOTE : EITHER DE5408 Introduction to Networks OR DE5423 Computer Aided Electrical Drawing must be selected in Y1

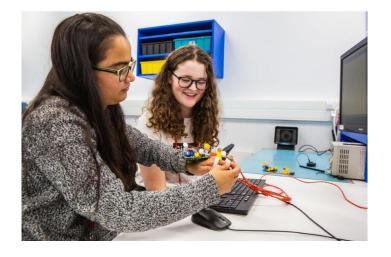
Preparing industry for future technologies

- Pathways for preparing industry include
 - Student Internships
 - Industry Advisory Panel

ABB

⊖ ENPHASE

Paihau – Robinson Research Institute



Supporting diversity in STEM

- Tech Bootcamps with indigenous iwi focus
- Scholarships at Technical Institutes
- Student and Outreach Coordinator -Robinson

The AETP Programme – Summary

son ute 🕬

Paihau—Robinson Research Institute

1897 VICTORIA UNIVERSITY OF WELLINGTON TE HERENGA WAKA