Sustainability through Cryogenic Hydrogen-Electric Aviation: Research of the Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

CEC-ICMC 2021

Phil Ansell, University of Illinois at Urbana-Champaign July 22, 2021

1

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation J4Or2A-01 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.

Aviation and the Global Climate Crisis

Aviation and the Global Climate Crisis

What are the Emissions?

- Atmospheric process creates additional chemical changes
 - Ocean uptake (CO₂), chemical reactions (CH₄, O₃), microphysical process (H₂O, aerosols, clouds, contrails)
 - Chemical lifetime differences at high altitudes
- Long-term and short-term impacts produced

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation J4Or2A-01 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.

The Challenge...

Why Hydrogen?

- Specific Energy of:
 - Jet A: 43.0 MJ/kg
 - LH₂: 119.93 MJ/kg (LHV)
 - Modern Li-Ion battery: 0.9 MJ/kg (250 Wh/kg)
- Energy Density of:
 - Jet A: 35 MJ/L
 - LH₂: 8.491 MJ/L (LHV)
 - Modern Li-Ion battery: 2.6 MJ/L
- Cryogenic LH₂ system enables high power and energy with low weight
 - Are LH₂ aircraft feasible?

H₂ Aircraft Studies

- Brewer/Lockheed (1970's)
 - Concept studies of transport-class aircraft using LH₂ energy
- Tupolev Tu-155 (1980's)
 - Experimental version of production transport aircraft
 - Just over 100 flights on LH₂ and LNG
- CRYOPLANE (2000-2003)
 - Technically feasible and equivalent safety as conventionally-fueled aircraft
- NASA (2004-2006)
 - Fuel cells too heavy (at 0.3 kW/kg) to make system feasible, indicating 4× increase in power density required for feasibility
 - ★ Recent order-of-magnitude increase in specific power (> 2kW/kg)
- Many others...

Ion Tiger UAV (LH₂ with Fuel Cell) DLR HY2 (LH₂ with Fuel Cell) ZeroAvia Piper M (GH₂ with Fuel Cell)

Phantom Eye Aircraft (LH₂ Combustion)

Tupolev Tu-155 (LH₂ Combustion)

Economic Viability

- DOE goal (2021):
 - \$1 for 1 kg of clean hydrogen in 1 decade
 - 80% decrease from current values
- Cost per unit energy:
 - Jet A @ \$80.77/bbl
 - 1 bbl = 158.99 L
 - 1 L = 35 MJ
 - = \$0.0145/MJ
 - H₂ @ \$1/kg
 - 1 kg = 119.93 MJ
 - = \$0.00834/MJ
- Need to determine LH₂ liquefaction, handling, and delivery costs!
 - Critical cost in infrastructural development

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

Our Team

- CHEETA
 - Established in 2019 under NASA ULI program
- Bringing together world experts in
 - Aeronautics
 - Electrical Systems
 - Material Science
- Multi-institutional
 - 9 Universities
 - 2 Industry groups
 - Government research collaboration

Technical Challenges (Aircraft)

Technical Challenges (Electrical System)

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation J4Or2A-01 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.

Research Components

System Definition

- Configuration defined to guide technology development programs
- Fully hydrogen-electric power and energy system
- Distributed-electric propulsion system integration
- 180-pax single-aisle aircraft
 - Group III (with 15%-span folding wingtips)
- Consistent mission as B737-800 $(M_{\infty}, range, reserves)$
- Assumed EIS: 2050

Power System Configuration

Power/Thermal System Architecture

- Architecture:
 - Hybrid centralized/distributed
 - Peak DC power: 25 MW
- Power Transmission:
 - Redundant superconducting power transmission
 - ± 270 VDC
- Motors:
 - Peak shaft power: 2.5 MW
- Cooling:
 - Liquid: Motor and transmission cable
 - Gaseous: Inverter, FC supply

Key Technologies in Development

Aircraft System:

- LH₂ Aircraft concept synthesis
- High-temperature PEMFC system integration
- Boundary-layer ingesting propulsor design optimization

• Electrical System:

- Ultra-efficient, power-dense superconducting motors
- Cryogenically-cooled power inverters
- Superconducting materials and power systems

Power and Energy System:

- Lightweight LH₂ tank designs
- Cryogenic circuit components and subsystems
- Electro-thermal system designs

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

Here at CEC-ICMC 2021

- M2Or2A-03 A Pressurized, Flexible, Variable Temperature Aerospace Cable Demonstration
- M2Or5A-01 Design and Optimization of Rotating Cryogenic Machine Topologies for a Hydrogen-Powered, Electric Propulsion Commercial Aircraft
- C3Or1A-05 Liquid hydrogen tank design for medium and long range all-electric-airplanes
- C3Or1B-06 Design and Analysis of Cryogenic Cooling System for Superconducting Motor
- M3Or1B-02 Comparison of Cryogenic Technologies for Electric Aircraft Power Transmission
- M3Or2B-01 Cryogenic Performances Comparisons Among Si MOSFET, SiC MOSFET, Cascode GaN, and GaN Devices
- M3Or2B-04 Electrical characterization of a 1200V GaN HEMT at cryogenic temperatures
- M3Or3A-01 Comparative Evaluation of Different DC-AC Converter Topologies for Cryogenic Applications Utilizing Superconducting Materials
- M5Or2A-01 Electro-Thermal Modeling of HTS Power Lines for Cryogenically-Cooled Electric Aircraft Design
- M5Or2A-02 Metal Composite T-Junction Terminals for Power Distribution
- M5Or2A-07 Current Sharing and Stability in an Extremely Low AC Loss MgB2 Conductor

Superconducting Motor Design

- **Partial SC** demonstrates:
 - Smaller losses than fully-SC
 - Lighter weight than PM motor with SC armature coils
- Air-gap flux density range is 0.4-1.2T
- Current density at cable: 300-400 A/mm²

Optimal machine flux density diagram

Partial-SC motor design space

Parameter	'Optimal' design
Rated Power [MW]	2.5
Outer Diameter [m]	0.5
Machine total length [m]	0.75
Active length [m]	0.867
Average torque [Nm]	7045
Air-gap flux density [T]	0.63
Armature SC length [km]	12.11
Field SC length [km]	7.3
Shield SC length [km]	0.1
Total SC length [km]	7.3
Iron shield weight [kg]	1
Total loss [W]*	2656
Weight (Iron and SC) [kg]	13
Specific Power (Iron and SC) [kW/kg]	192

*Allocate 40% additional margin for losses considering uncertainty in loss prediction, field harmonics, time harmonics and losses in current lead, conduction and radiation. **Total losses: 4.3 kW** 25

Electronics Component Characterization

- Transistors at low temperatures:
 - Traditional Si: good conduction and switching performance
 - SiC MOSFET: increased onresistance, variable switching speed
 - Cascode/single-chip GaN HEMT: reduced conduction and switching loss
 - No "carrier-freezeout" observed
 - Tolerable on-resistance at deep cryo temperatures
- Passive components
 - Variable performance
- Gate drivers
 - Lose functionality at low temperatures

Power Converter Design

Current-source inverter suitable to handle voltage variation

2000

40

60

Frequency (kHz)

 10^{2}

10

Frequency (kHz)

Superconducting Power Systems

- Superconducting power transmission system:
 - Size, weight, and power (SWaP) trade studies for DC power system
 - Material selection (YBCO, hyperconducting Al)
 - Configuration and sizing of busbars, current leads
 - ± 270V bus is feasible
- Configuration of current leads:
 - Heat Loss = 2–4 W @ 30K, 20 $n\Omega - m^2$
 - Mass = 2.8–6.2 kg (varies with temp and power loss)

Bimetallic copper-aluminum T joint

	Cu _{0.15} Al _{0.85} Cuponal [™]	Al > 99.999% Hyperconductor	YBaCuO or MgB ₂ Superconductor
	@ 294K	@ 20K	@ 20-65K
Weight	9,355 kg	411 kg	357 kg
	(heavy!)	(light)	(light)
Waste Heat	155 kW	28.5 kW	3.7 kW
	(hot!)	(hot)	(cool!)
Cost	medium	high	high
Complexity	low	medium	medium
TRL Level	9	4	4, aircraft
			9, CERN
Protection Risks	high	high	medium, (FCL
		ingii	intrinsic)

Summary of technology solutions

*Assumes 40MW system

Drivetrain Technology Demonstrator

- Test of 1 kA AI, 99.999% cryo-cable
 - Connect/test a 20 kW cryo-inverter
- Vapor cooled +/- current lead pair
 - Gradient: 20 K to ambient temperature
 - Vapor pressure up to 30 psi
- Operating range:
 - Voltage = 1 kV (present), to 10 kV (future)
 - Currents = 1 kA (present), to 10 kA (future)
- Cryogen boiloff starting from motors
 - Cryogenic vapor exiting the leads can be redirected to power electronics, etc.

(2ea) Voltage shielded XLPE conduit

LH₂ Tank Design

- Key design drivers
 - Integral vs. non-integral (modular)
 - Materials and insulation
 - Tank shape and size
 - Slosh, bulk-head baffles
 - Loads and multi-point operation
 - Safety considerations
 - Manufacturing, processing, inspection
- CHEETA design:
 - Tank weight fraction (W_{tank}/W_{H2}) = 0.60-0.67

LH₂ Pump, Distribution

- Pump selection (LH₂)
 - Piston pumps provide excessive pressure and insufficient flow
 - Centrifugal pumps provide insufficient pressure and excessive flow
 - Phase separation
 - Opportunities for new aerospace-grade LH₂ pumps
- Vacuum jacket distribution lines
 - Maintaining vacuum quality
 - Welded line designs
 - System controls
 - Purging and venting

Nikkiso 1-cylinder SGV Piston Pump

Flexible vacuum jacket lines (cryostat)

Multi-Domain Modeling Example: HTS

1E6-

1E5-

1E2+

- Multi-domain transmission line
 - Co-axial cable model and Stekly cryostability equations (Mike Sumption, OSU)
 - Both gas and liquid cooled cables
 - Coaxial cable pi-line electrical circuit

CHEETA

HTS Cable from: C.J. Kovacs, M. Majoros, M.D. Sumption, E.W. Collings, Quench and stability of Roebel cables at 77 K and self-field: Minimum quench power, cold end cooling, and cable cooling efficiency, Cryogenics, Volume 95, 2018.

- Simulation results
 - HTS line subject to current ramp input
 - Liquid cooling provides superior stability
 - Impedance limits on fuel cells

Agenda

- Introduction
- CHEETA Team and Technical Challenges
- Research Components and System Definition
- Technical Work at CEC-ICMC 2021
- Acknowledgements

Acknowledgements

- Tremendous support provided through the NASA ULI/CHEETA program through:
 - 13 university faculty members
 - 14 senior personnel
 - 2 industry interns
 - 23 graduate students
 - 6 undergraduate students
 - 4 high school students

This work was supported by NASA under award number 80NSSC19M0125 as part of the Center for High-Efficiency Electrical Technologies for Aircraft (CHEETA)

