Design, construction, and commissioning of a deployable liquid hydrogen production and fueling system for unmanned aerial systems

Cryogenic Engineering Conference July 22, 2021

Ian Richardson, Ph.D.

Postdoctoral Researcher MHGU2 Project Lead irichardson@wsu.edu

WASHINGTON STATE

H H Y drogen P roperties for E nergy R esearch Lab

HYPEB

0	WS11	Insider	Home
5	1120	manuer	TIOTIC

Campus & Community

Arts & Culture

Business & Economics

Food & Agriculture

Health & Medicine

Politics & Society

Science & Technology

Reports & Updates

For Journalists

Events Calendar 7 Social Media Directory 7

Let's Share

M

SCIENCE & TECHNOLOGY @

U.S. Army grant supports development of hydrogen-powered Unmanned Aerial Vehicle

🕒 July 18, 2019

By Siddharth Vodnala Voiland College of Engineering and Architecture

Jacob Leachman, associate professor in Washington State University's School of Mechanical and Materials Engineering, has received a \$1.8 million grant from the U.S. Army to demonstrate a liquid hydrogen-powered UAV and refueling system.

The \$7.2 million total grant includes researchers from Mississippi State University, Insitu Inc., and Navmar Applied Sciences Corporation. Insitu, a subsidiary of Boeing, will provide their ScanEagle3® UAV, equipped with a fuel cell-powered electric engine. MSU will measure performance characteristics of the drone.

o Insitu employees Clay Christian and Jon Cantella holding the ScanEagle UAV.

Liquid Hydrogen Fueling Infrastructure

- Lack of small-scale LH2 infrastructure
 - Smallest industrial gas liquefiers are 1 tonne/day, doesn't include H2 generation or storage.
- Small LH2 vehicles need a fueling solution
 - LH2 deliveries geographically limited and typically require orders of 1 tonne.
- WSU developed a containerized fueling station that generates, liquefies, and stores LH2

MHGU Specifications

- Refuel a small LH2 fuel tank in the field
- Liquefy 1-2 liter of hydrogen per hour
- Store approximately 50L of LH2 $\,$
- Power requirements:
 - + 208 V or less
 - 200 A or less
 - \cdot Single or three phase power
- Consumables:
 - Tap water
 - Gaseous helium
- Refill LH2 fuel tank in 20 minutes or less
- + Standard military C130 container minimal footprint
- Operate with minimal human interaction
- Comply with NFPA codes and industry best practices for hydrogen

Shutdown Table and Controls

Type of Consequence	Trigger	Outcome	Control System	Cleared By
Process Stop 1	-H2 above 1% -Loss of ventillation	-Electrolyzer OFF -Isolate H2 -Alarm strobe ON	PLC	Process Stop Reset Button
Process Stop 2	-H2 above 2%	-Electrolyzer OFF -Cryocooler OFF -Vent H2 out stack -Alarm horn and strobe ON	PLC	Process Stop Reset Button
E-Stop	-Fire -Dewar pressure < 3psig -E-stop button	-Electrolyzer OFF -Cryocooler OFF -Vent H2 out stack -Alarm horn and strobe ON	Safety Controller	E-Stop Reset Button

MHGU2 Overview

Hydrogen Room

HYPER

Equipment Room

Sumitomo FA-70

Liquefier

- Major Components
 - 60 L Dewar
 - Cryocooler Coldhead
 - Thermocouple Rake
 - AlSi₁₀Mg Additively Manufactured Heat Exchanger
 - Heater Block
 - Superconducting Liquid Level Gauges with Heaters

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021.

Liquefier

- Safety Features
 - Dual PSV 80 psig & 105 psig
 - Active temperature controls

Liquid Hydrogen Transfers

- Vacuum-jacketed transfer line
- Quick connect coupler
- Helium shroud
- + 50+ LH2 transfers conducted

User Interface

- Touch screen display
 Monitoring and control
- Push button operation
- Remote access

External Interfaces

15

Outdoor Liquid Hydrogen Test Facility

Hydrogen Storage Requirements
☑ LH2: up to 150 L
☑ gH2: up to 68 std. m^3 (2400 std. ft^3)

Power Requirements

• 200 A, 208V, 3-Phase

Site Requirements

- Water
- Lighting
- Video Monitoring
- Fire/EMS access
- Near Fire Hydrant

Liquid Hydrogen Test Facility

Summary

- Developed a transportable LH2 fueling station
- Developed an outdoor LH2 test facility
- Field testing later this summer

<u>Thank you!</u>

http://www.hydrogen.wsu.edu

