Challenges and opportunities for Superconductors in **High Magnetic Fields**

CCA 2021

Boris Maiorov

Recent collaborators: Maxime Leroux,^{1,*} Christopher Mizzi,¹ Fedor Balakirev¹, Masashi Miura,² Jens Haenisch³, & Leonardo Civale¹

> ¹ Los Alamos National Laboratory ² Seikei University, Tokyo Japan ³ Karlsruhe Institute of Technology, Germany

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), December 2021. Invited presentation MS-6 was given at the virtual CCA 2021, October 11-15, 2021.

Heike Kamerlingh Onnes proposed & built the first persistent magnet to prove R=0

- It is difficult to measure R=0
- Persistent mode experiment convinced physics community

Hahn, S. et al. Nature (2019)

RECORD-BREAKING MAGNETS

 Superconducting magnets (lab demonstrations)

Superconducting magnets

(used in applications)

 Hybrid superconductingresistive magnets

1930

New cuprate superconductor

- Resistive magnets

50

40

(tesla)

ngth

ts 30

agnetic 1 0

onature

A new magnet has reached a field strength of 45.5 tesla, exceeding the maximum strengths achieved so far by other superconducting and resistive magnets.

The first (mechanical) persistent mode switch and a cutting device (1914)

1950

1990

Source: Mark Bird, National High Magnetic Field Laboratory

1970

2010

Los Alamos National Laboratory

1910

How much do we know about critical currents ?

- HTS based coated conductors offer the highest performance
- No data above 45T
- We need J_c measured at higher fields

National High Magnetic Field Laboratory's Pulsed Field Facility (NHMFL-PFF) offers a variety of tools

New states of matter revealed in Ultra-High Magnetic Fields

The Pulsed Magnet was Engineered and built at LANL **1** m ANL's 1.43 GW generator car afelv deliver a 600 MJ electrica 0 pulse, a key capability giving the US a lead in high magnetic field generation capability ∆f (MHz) 0.51 Very high magnetic fields are 0.2 Magneto-quantum oscillations reveal essential for revealing the 0.50 the Fermi surface material's quantum energy of materials such states which yield electronic as High T_cs and 10 20 30 40 50 60 70 80 structure and electron mass $\mu_0 H(T)$ actinides

Marcelo Jaime & Scott Crooker (LANL) have developed an optical technique to sense the "magnetostriction" of a magnetic material.

Measurements in pulsed field: 'standard', long and duplex magnets

- 65T pulsed magnetic field our 'standard'
- $J \perp H$ (maximum Lorentz force configuration)
- ρ(H) measured by AC (~100 kHz)
- Measurement in ⁴He and ³He

Large dH/dt prevents use of metallic components

Measurements in pulsed field: 'standard', long and duplex magnets

- 65T pulsed magnetic field. **77T NEW DUPLEX**
- $J \perp H$ (maximum Lorentz force configuration)
- ρ(H) measured by AC (~100 kHz)
- Measurement in ⁴He and ³He

Large dH/dt prevents use of metallic components

Measurements in pulsed field: 'standard', long and duplex magnets

- 65T pulsed magnetic field. **New long pulse magnet**
- $J \perp H$ (maximum Lorentz force configuration)
- ρ(H) measured by AC (~100 kHz)
- Measurement in ⁴He and ³He

Large dH/dt prevents use of metallic components

Angular dependent resistivity measurement set-up in high pulsed magnetic fields in thin films

Single band: $H_{c2}(\Theta)$ dependence follows single anisotropy with $\gamma \sim 5$

- Samples of with different additions and growth methods follow similar ۲ angular dependence
- Small decrease in γ is observed with respect to YBCO
- In single band superconductor $\gamma_{\rm H} = H_{\rm c2}(||ab)/H_{\rm c2}(||c) = (m_{\rm c}/m_{\rm ab})^{1/2}$

Determination of critical current in superconductors

- Increasing current until dissipation shows
- Critical current set by a criterion (~1µV/cm)
- Dissipation grows rapidly, danger of destroying sample if current not stopped
- Typical measurement several seconds

Critical current measurements can be done up to the highest fields available in pulsed fields

400

200

-200

-400

Voltage (µV)

- Samples patterned in a meander
- 5cm effective length, field compensated
- YBCO and YBCO+BaHfO₃ nanoparticles
- We started by taking data only at peak field to reduce possible detrimental *dH/dt* effects
- Compared with data taken in DC fields
- Optimization of integration time
- New design with better field compensation
- Shorter meander:

- Less chances of bad spot
- Lower impedance = no peak in V nor slope
- Lower background = better signal/noise relation

Current – Voltage curves are reproducible and agree with J_c values in DC fields

- V-Is do not depend on current step size or integration time
- V-I are reproducible
- Results agree with DC measurements
- Some deviation at low *E J*

Leroux et al., Phys. Rev. Appl. 327, 1631 (2019)

Critical currents measured in DC and pulsed fields agree in values and field dependence

- Data at low fields agrees with DC fields (small shift due to thermometry)
- IV curves taken up to H_{irr}
- J_c shows continuation of power law
- Rapid decrease near H_{irr}

Leroux et al., Phys. Rev. Appl. 327, 1631 (2019)

The shape of Voltage-Current curves changes at higher *dH/dt*

- Two regimes are observed
- Higher E-J back to non-linear
- Linear regime in J increases with dH/dt almost linearly
- Higher *dH/dt* is detrimental for *J_c* measurements

B. Maiorov (maiorov@lanl.gov)

Voltage-Current curve shape changes with higher dH/dt: Two different regimes

- DC field, uniform current, movement due to current induced force
- **Pulse:** Fast enter/exit (diffusion time $\propto 1/\dot{H}$) V = 0
- Applied Electric field + induced electric field. $E_J + E_H$; $E \propto (J/J_c)^{\alpha}$

600

500

400

(hV)

< 15 T/s</p>

♦ 55 T/s ▲ 200 T/s

450 T/s

120-

100

Field profile symmetry is broken with large dH/dt and applied DC current

- Symmetric field/current profile with changing magnetic field
- Applied current breaks symmetry: now total current takes into account both
- $E(x) = E_J + E_H(x)$ (we use $E = E_c(J/J_c)$
- Integrate J over sample to obtain current
- $\epsilon = W \dot{H}$ variable

$$\begin{split} \vec{J}_{\dot{H}}(x) &= J_c \left| \frac{E_J - \mu_0 \dot{H} x}{E_c} \right|^{1/n} \operatorname{sign}(E_J - \mu_0 \dot{H} x) \vec{e_y} \\ I &= \frac{dJ_c}{\mu_0 \dot{H} E_c^{1/n}} \frac{n}{n+1} \left[\left| \frac{V}{L} + \mu_0 \dot{H} \frac{W}{2} \right|^{(n+1)/n} \right. \\ &- \left| \frac{V}{L} - \mu_0 \dot{H} \frac{W}{2} \right|^{(n+1)/n} \right]. \end{split}$$

Leroux et al., Phys. Rev. Appl. 327, 1631 (2019)

Voltage-Current curve shape changes with higher *dH/dt: Two different regimes*

- Two regimes are observed
- Higher E-J back to non-linear
- Linear regime in J increases with *dH/dt* almost linearly
- *J_c* can be extracted from linear term if dH/dt is known

$$R_{\rm eff} = \frac{L}{W^{1/n}d} \frac{E_c^{1/n}}{J_c} \left| \frac{\mu_0 \dot{H}}{2} \right|^{(n-1)/n}$$

Similarities with AC losses work

- Brandt & Indenbom, Phys. Rev. B 48, 12893 (1993)
- Zeldov et al films, Phys. Rev. B 49, 9802 (1994)
- Risse et al , Phys. Rev. B 55, 15191 (1997) (very low pinning)
- Mikitik & Brandt, Phys. Rev. B 64, 092502 (2001)
- Uksusman *et al,* J. Appl. Phys. **105**, 093921 (2009) (strong pinning)

Multiples samples of YBCO with different pinning landscapes measured (nanoparticles, nano-rods, point defects...)

Experiments up to 65T determine the onset of fluctuations on J_c at low temperatures

H

vortex

solid

I > 0

vortex

liquid

I=0

 H_{irr}

 H_{c}

normal

state

- Power law regime in J_c(H) followed by faster decrease dominated by fluctuations
- Sample with self-assembled columnar defects (YBCO+BZO by PLD)
- Collapse of curves with extrapolated melting line
- Field dependences showcase different pinning characteristics

Summary

- J_c measurements are routinely done, and keep improving
- New vortex regimes observed in V-I curves for high *dH/dt* (share physics with AC-losses)
- **J**_c measurements show 'continued' increased at higher fields
- •Onset of fluctuation related to melting line is observable at 65T (YBCO)

