

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Design, Fabrication and Testing of a Superconducting Electrodynamic Suspension Magnet with Coated Conductor Tapes

Guangtong Ma¹, Tianyong Gong¹, Ruichen Wang¹, Songlin Li¹ Pengbo Zhou¹, Jing Li¹, Chao Li², Zhengfu Ge²

Nov 29

Southwest Jiaotong University, Chengdu, P. R. China¹ Xi 'an Superconducting Magnet Technology Co., Ltd, Xi 'an, P. R. China²

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Outline

1 Background

2 Systematic Design

3 Magnet Fabrication

4 **Testing Results**

5 Conclusion

I. Background

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Background

CRH

Shinkansen

ICE

Running speed of wheel-rail traffic

For the higher speed of ground transportation, the maglev technology is a promising candidate

I. Background

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Electrodynamic Suspension (EDS)

- Self-stable levitation
- Free-of control for levitation
- Large suspension gap (100mm+)

L0-type EDS Train 603km/h (April 2015)

I. Background

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Motivation

Using HTS magnet in EDS system:

Motivation

The comparison between commercial superconductors

Material	NbTi	BSCCO	REBCO
Operating Temperature	4.2K	<20K	30К
Critical Current	350A@4.2K, 5T	~140A@30K, 5T null@50K, 5T	~1100A@30K, 5T ~330A@40K, 5T
Critical Stress	884MPa@77K 1073MPa@4.2K	270-400MPa@77K	800-820MPa@77K 800-830MPa@4.2K

HTS materials already have the comparative performance as LTS

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Outline

1 Background

2 Systematic Design

3 Magnet Fabrication

4 **Testing Results**

5 Conclusion

□ Structure design of the coils

Demands:

- Coil structure: racetrack
- Cooling method: conduction-cooling
- Closed-loop operation
- Detachable components

Design scheme and objective

Description	Objective
Number of coils	2
Operating temperature	<30K
Pole pitch	568mm
Total length	≤3km
Maximum field	>3T
Suspension capacity	>5kN
Guidance capacity	>3kN

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Basic parameters of tapes

Parameter	Description
Material	REBCO
Insulation material	Polyimide
Width of tapes	6mm
Critical current	>300A@30K, 3T
Average <i>n</i> value	36@30K
Current homogeneity	±10%
Tensile stress	>300MPa
Peel stress	15MPa
Minimum bending radius	15~20mm
Tape length per pancake	≥160m

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Parameter optimization of the coils

Optimization objective:

Racetrack structure (left) and cross section (right) of coil

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity 10 (ISS 2022), 29 November, 2022, Nagoya, Japan.

□ Distribution of the coil magnetic field

When the coil is charged to **250A**, the maximum magnetic field produced by the two series-wound coils is about **3.15T**, located on the innermost turn of the round edge

Current density and magnetic field distribution of the coil

Magnetic field distribution at z=0mm of xy plane

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Critical current of the coils

The dependence of critical current on operating temperature was calculated using the **self-consistent model** as follows

The critical current is required to be 420A considering a 40% safety margin. Therefore, the operating temperature should be **lower than 30K**

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Design of the coil skeleton

To ensure the **mechanical strength** of magnet, the coil skeleton we designed is shown as follow, considering the effect of thermal contraction and electromagnetic force

3D structure of coil skeleton

	Component	Material
А	Cover plate of coil case	6061
В	Coil inside skeleton	G10
С	Stress buffer components	High purity aluminum
D	HTS coils	REBCO
E	Stress buffer components	High purity aluminum
F	Coil outside fastener	G10
G	Coil case	6061

Target

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity **13** (ISS 2022), 29 November, 2022, Nagoya, Japan.

Design of the cryostat

- Operating temperature: 20 K
- Vacuum level: <10⁻⁴ Pa

- Maximum deformation of dewar: <1.5 mm
- The gap between coil and dewar: <30 mm

3D structure of conduction cooled on-board HTS magnet

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

□ Mechanical strength verification

• Thermal-mechanical coupling model was built to verify the mechanical strength of main support rod

Maximum stress lower than 75% allowable stress of material

□ Heat leakage evaluation

• Heat load: charging loss, conduction, radiation

Simulation model of magnetization loss (left) and eddy current loss (right) for HTS coil

Total AC losses and temperature rise per cycle

Heat load and temperature of cold head

Condition	1 st -stage cold head		2 nd -stage cold head	
	Heat load [W]	Temperature [K]	Heat load [W]	Temperature [K]
Cooling	23.44	41.60	1.22	3.90
Charging	31.39	47.40	1.22	3.84

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Outline

1 Background

2 Systematic Design

3 Magnet Fabrication

4 **Testing Results**

5 Conclusion

III. Magnet Fabrication

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity **17** (ISS 2022), 29 November, 2022, Nagoya, Japan.

□ Fabrication of coils

III. Magnet Fabrication

□ Assembly of coils

These two coils were seriesly connected by **copper bridge** with a HTS tape, in which they were wound along different directions to provide **reverse magnetic poles**

III. Magnet Fabrication

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity 19 (ISS 2022), 29 November, 2022, Nagoya, Japan.

□ Assembly of the magnet

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Outline

1 Background

2 Systematic Design

3 Magnet Fabrication

4 **Testing Results**

5 Conclusion

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Measurement system

Electromagnetic-thermal measurement system

22

□ Sensor layout - Temperature

Temperature sensor	Sensor type and range	Position	
C1	Cernox (>4K)	2 nd -stage cooling plate	
C2-C5		HTS coil skeleton	
C6-C7		Upper HTS current leads	
PT1	PT100 (>30K)	1 st -stage cold head	
PT2-PT6		Radiation shield	
РТ7-РТ8		Lower HTS current leads	

Temperature sensor layout

- Cernox temperature sensor is arranged at the coil skeleton, the 2nd-stage cold head and the HTS current leads
- PT100 temperature sensor is arranged at the 1st-stage cold head, radiation shield and the HTS current leads

23

□ Sensor layout - Magnetic field

- Considering the geometric symmetry, only a quarter region was measured
- The measurements were focused on the straight section
- The magnetic field distribution was measured at different air gaps

Experimental device

Magnetic field measurement position (Red line)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

24

Cooling Test

• The vacuum (10⁻⁵Pa) could remain >1 month without the pump

- ✓ Coil max/min: 14K/11K ✓ Left/right upper HTS current leads: 45/46K
- ✓ 1st/2nd cold head: 36K/5K ✓ Cooling time-consuming: ~75h

25

□ Charging test - Electrical characteristics

- Charging: 10mA/s to 150 A, and 5mA/s to 240A
- Discharging: -10mA/s to 200 A, and -100mA/s to 0A

✓ Performance deterioration occurs in DP7 and DP3 , but their voltage is still lower than the quench criterion

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Charging test - Magnetic characteristics

• The magnetic field distribution of the magnet was tested at 25A, which is compared with the simulation results

Field spatial distribution at 25A

Magnetic field during charging

✓ The results verify: small installation error and stable mechanical structure

Charging test - Thermal characteristics

- The temperature of all components increase during charging
- After charging, the temperature gradually reached steady state

 The temperature of the HTS current lead and the right coil skeleton rises most significantly

Charging test - Thermal characteristics

• The temperature at steady state was recorded to analyze the variation of the maximum temperature with current.

- ✓ Coil 2# temperature exceeds that of coil 1# due to the degenerative DP7
- ✓ The temperature rise of the upper current lead exceeds that of the lower one, due to the heat leakage from copper current lead

29

□ Traveling magnetic field excitation

• The on-board magnet surfers traveling magnetic field excitation in abnormal condition (activating, braking and control failure)

Schematic diagram of HTS magnet and propulsion coils

✓ The equivalent experimental system was designed and fabricated to simulate the traveling magnetic field excitation of propulsion coil

Experimental platform – Thermal

 This experimental platform, simulating the traveling magnetic field excitation of propulsion coil, was built to evaluate the thermal performance of on-board magnet

Traveling magnetic field excitation experimental scene

□ Thermal performance

• Eddy current losses were estimated by the temperature rise of the cold head based on cryocooler load map

- $\checkmark\,$ The loss in coil cases is negligible due to the shield effect
- $\checkmark\,$ The eddy current loss is a major threat to the upper HTS current leads

32

□ Experimental platform - Force

• This experimental platform was built to measure the electromagnetic force between the HTS magnet and the suspension coil

Electromagnetic force test platform

□ Electromagnetic force

• The suspension forces of HTS magnet in different scenarios were tested and compared with the calculated results

 \checkmark The accuracy of the simulation model was verified by experiments

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Outline

1 Background

2 Systematic Design

3 Magnet Fabrication

4 **Testing Results**

V. Conclusion

35

Until now

- Systematic design and fabrication of on-board HTS magnet and cryogenic system
- Cooling testing —— lowest temperature: 14K (cooling time 75h)
- Charging testing —— operating current: 240A (magnetomotive force 518kA)
- The thermal performance measurement and evaluation of the HTS magnet undergo the travelling magnetic field of ground propulsion coils
- Preliminary test of suspension force between HTS magnet and suspension coil

Soon in the future

- Charging testing of HTS magnet at current 300A with bigger power supply
- Electromagnetic force measurement between the magnet and ground coils
- Dynamic performance evaluation of the on-board HTS magnet

Reference

For more information, please refer to:

- <u>Guangtong Ma*,</u> Tianyong Gong, Ruichen Wang, Songlin Li, Xingchao Nie, Pengbo Zhou, Jing Li, Chao Li, Zhengfu Ge and Hengbin Cui, "Design, fabrication and testing of a coated conductor magnet for electrodynamic suspension," <u>Superconductor Science and Technology</u>, vol. 35, no. 2, Feb. 2022, Art. no. 025013.
- Tianyong Gong, <u>Guangtong Ma*</u>, Ruichen Wang, "Eddy current losses in superconducting secondary of a linear synchronous motor: calculations and measurements," <u>IEEE Transactions on Energy</u> <u>Conversion</u>, vol. 37, no. 3, pp. 1895-1906, Sept. 2022
- Ruichen Wang, <u>Guangtong Ma*</u>, Pengbo Zhou, TianYong Gong and Songlin Li, "Thermoelectromagnetic Modelling of Coated Superconductor Coils with Metal Insulation," <u>Superconductor</u> <u>Science and Technology</u>, vol. 34, no. 11, Oct. 2021, Art. no. 115017.
- <u>Guangtong Ma*</u>, Yiyu Wang, Jun Luo, Yao Cai, Ruichen Wang, and Xuliang Song, "An analyticalexperiment coupling method to characterize the electrodynamic suspension system at various speeds," <u>IEEE Transactions on Industrial Electronics</u>, vol. 69, no.7, pp. 7170-7180, Jun. 2022
- Zhenhua Su, Jun Luo, <u>Guangtong Ma*</u>, Kang Liu, Libin Cui, and Yiyu Wang, "Fast and precise calculation of mutual inductance for electrodynamic suspension: methodology and validation," <u>IEEE Transactions</u> <u>on Industrial Electronics</u>, vol. 69, no.6, pp. 6046-6057, Jun. 2022.
- 6. Zhengwei Zhao, <u>Guangtong Ma*</u>, Jun Luo, Jing Li, Zhenhua Su, Kang Liu, "Modeling and Characteristic Analysis of Air-cored Linear Synchronous Motors with Racetrack Coils for Electrodynamic Suspension Train," *IEEE Transactions on Transportation Electrification*, doi: 10.1109/TTE.2021.3126595, Nov. 2021.
- Zhenhua Su, <u>Guangtong Ma*</u>, Jun Luo, "Analytical Modelling of the Closed-loop Operation and Quench Behavior for Superconducting Electrodynamic Suspension Train," <u>IEEE Transactions on Transportation</u> <u>Electrification</u>, vol. 8, no.1, pp. 1026-1039, Mar. 2022.
- Tianyong Gong, <u>Guangtong Ma*</u>, Jing Li, Zhengwei Zhao, Ruichen Wang, " Design Optimization of High Temperature Superconducting Magnets and Null-Flux Coils for Electrodynamic Suspension Train, " <u>IEEE</u> <u>Transactions on Energy Conversion</u>, vol. 37, no.1, pp. 526-536, Mar. 2022.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January, 2023. This invited presentation AP2-1 was given at the 35th Annual International Symposium on Superconductivity (ISS 2022), 29 November, 2022, Nagoya, Japan.

Thanks for Your Attention!