

Superconducting Technologies for Cleaner and Sustainable Future

Ziad Melhem Oxford Quantum Solutions Ltd, Oxford, UK

2nd EFATS, Glasgow, Scotland, UK

31st Aug 2022

30 August 2022

ziad.melhem@oxqsol.com

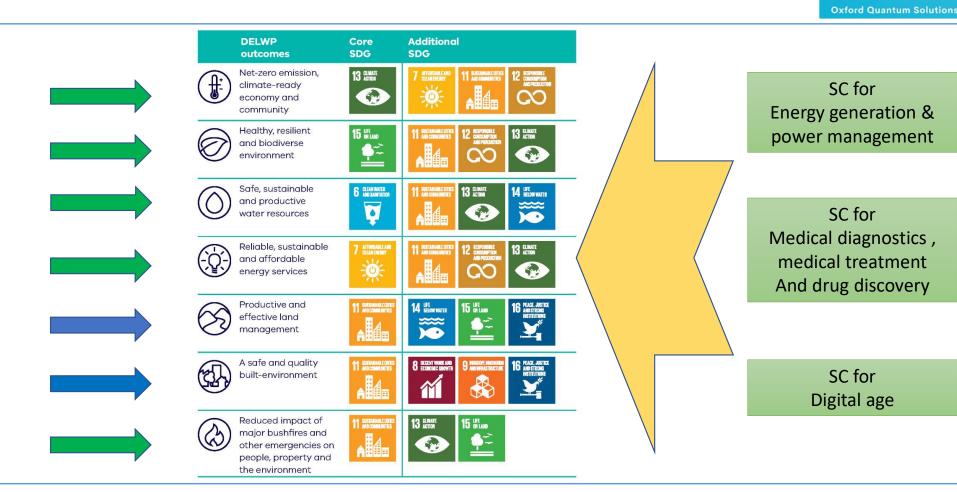
- 1. The challenge
- 2. Overview
- 3. Superconducting materials
- 4. Market analysis
- 5. Opportunities
- 6. Superconductivity for the Future Initiative

The challenge

30/08/2022

ziad.melhem@oxqsol.com

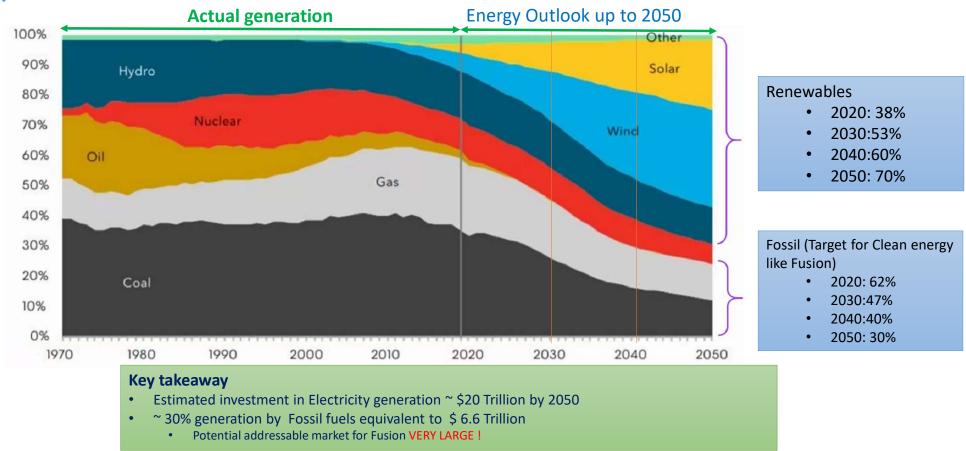
Global Environmental Challenges



30 August 2022

ziad.melhem@oxqsol.com

Superconducting Technologies and the SDG goals


30 August 2022

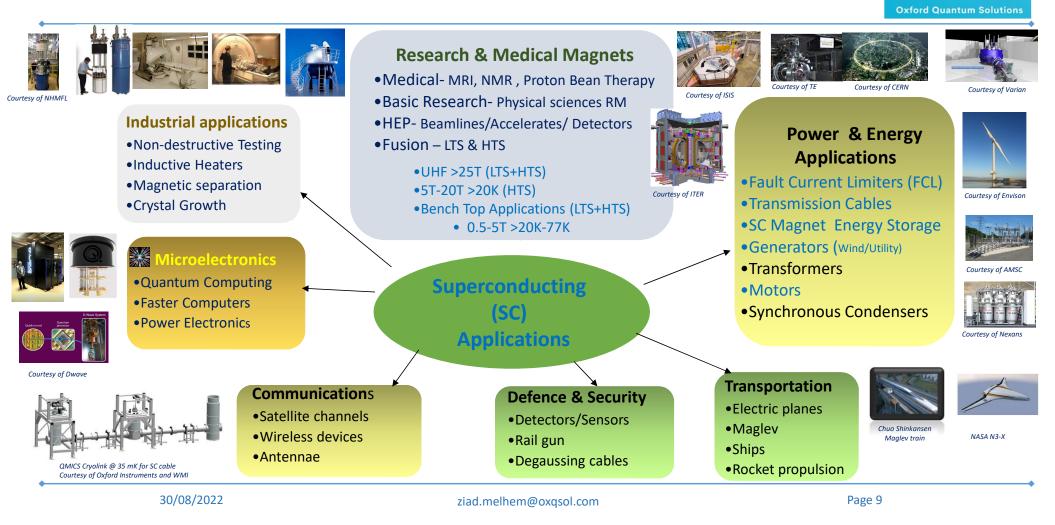
ziad.melhem@oxqsol.com

Estimated Global Electricity Generation Mix

New Energy Outlook 2020 report by Bloomberg (2020)

30 August 2022

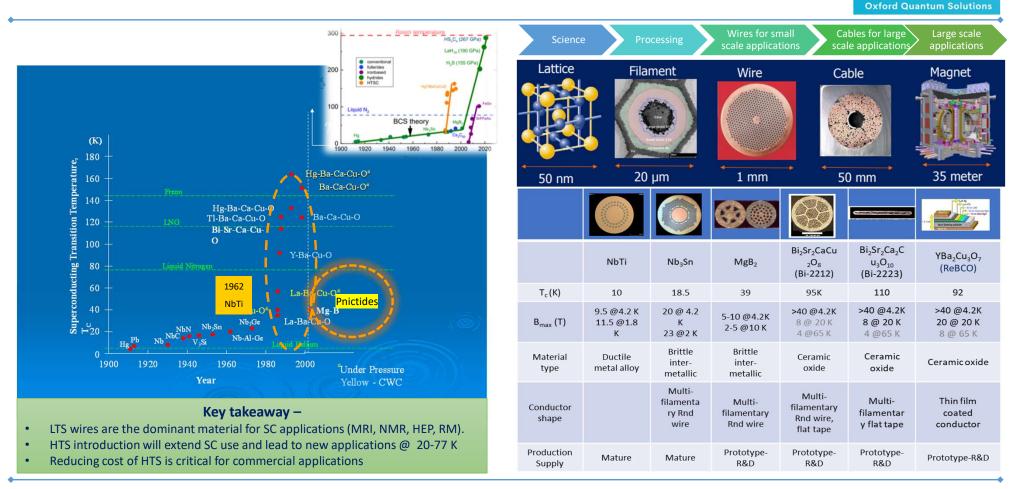
ziad.melhem@oxqsol.com



Overview

30/08/2022

ziad.melhem@oxqsol.com



Superconducting materials

30/08/2022

ziad.melhem@oxqsol.com

From Nanomaterials to SC materials for applications

30 August 2022

ziad.melhem@oxqsol.com

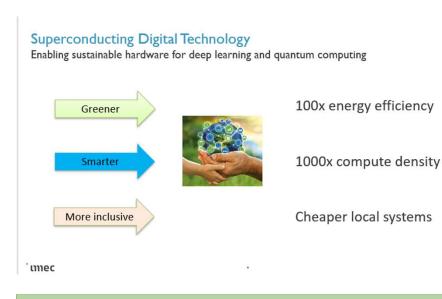
Opportunities

30/08/2022

ziad.melhem@oxqsol.com

Expected Emerging SC markets by 2030

- Fusion
- Electric planes
- SC magnetic storage
- Renewables
- Compact and portable HF magnet systems for Physical and Life Sciences
- SC quantum computing
- Superconducting Electronics
- Medical diagnostics and therapy
- Industrial
- Transport



ziad.melhem@oxqsol.com

Quantum Computing – Superconducting Qubits > 10 B \$ commitment over the last 2 years

Oxford Quantum Solutions

Google unveiled the world's largest quantum computer processor to date • Dubbed Bristlecone, it's a 72-qubit gate-based superconducting system

The D-Wave 2X system implements a quantum annealing algorithm

D-Wave systems are being used, for example, by Lockheed Martin, Google, NASA, & the University of Southern California.

With 1000 qubits, the D-Wave 2X system can search through 2 ¹⁰⁰⁰ possible solutions

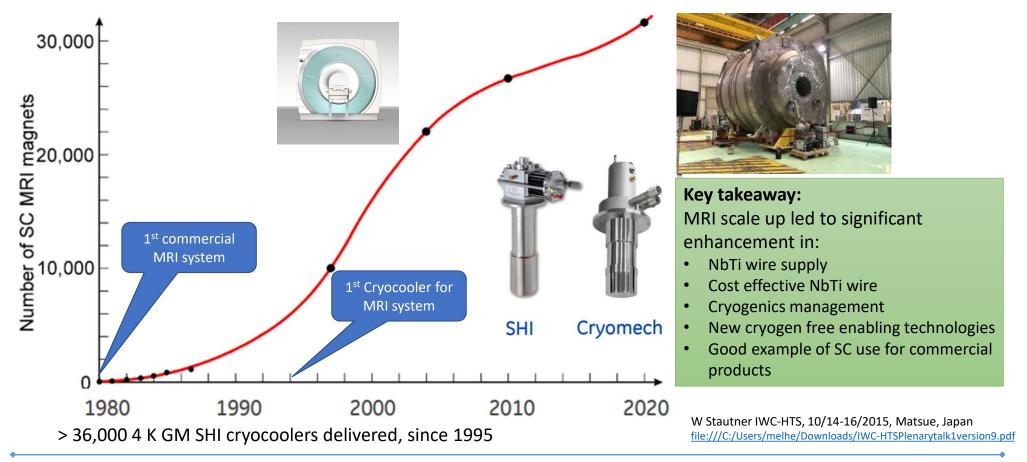
Superconducting Qubit Devices

- Commercial Leaders:
- D-Wave, IBM, Google, Rigetti, Quantum Circuits Inc, Intel and others
- Academic Leaders:
- UCSB, UC Berkley, Yale, ETH Zurich, TU Delft, MIT, and others

Key takeaway –

- Superconductivity critical for the digital aged based solutions
- SC qubits leading the way towards Quantum computers and embraced by big industrials

Already providing users with 20


IBM demonstrated a 127 Qubit

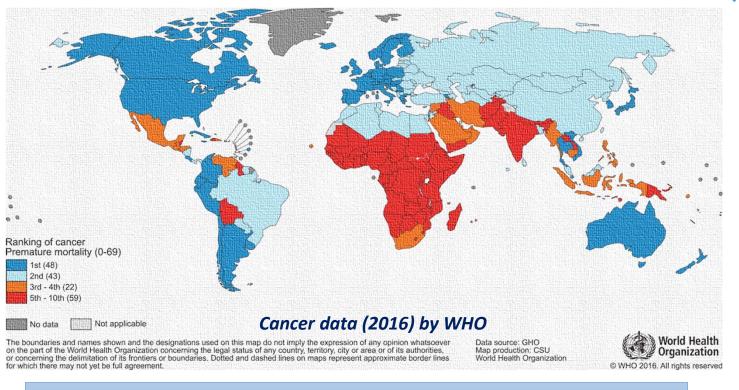
Quantum Computer

30/08/2022

ziad.melhem@oxqsol.com

MRI is a large volume production business- Led to new standard in Wire Supply, Cryogenics and Instrumentation

30 August 2022


ziad.melhem@oxqsol.com

Page 15

Oxford Quantum Solutio

SC – Accelerators for cancer treatment

- > 19 million new cancer cases in the world (2020)
 - >4M in Europe
 - The probability to develop (die of) cancer
 <75 y old in Europe is
 ~28% (12%)
- By 2040, expected 27.5 M new cases and 16.3 M deaths, simply due to the growth of the population and increasing life expectancy
- 1st cause of mortality in higher income countries, 2nd cause of mortality worldwide

Key takeaway Superconducting based solutions can and will help

30 August 2022

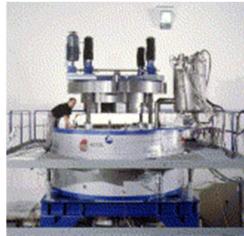
ziad.melhem@oxqsol.com

Page 16

Oxford Quantum Solutio

Medical Therapy

Commercial accelerators for proton therapy: cyclotrons (by IBA and Varian/Accel) and synchrotrons (by Mitsubishi and Hitachi).

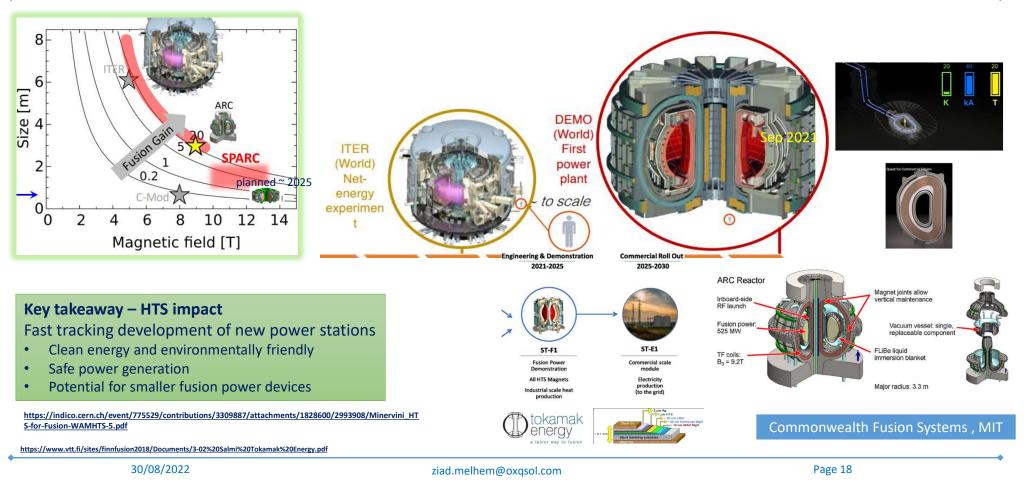

Varian/Acce Now LTS Plans for HTS Mitsubishi Hitachi

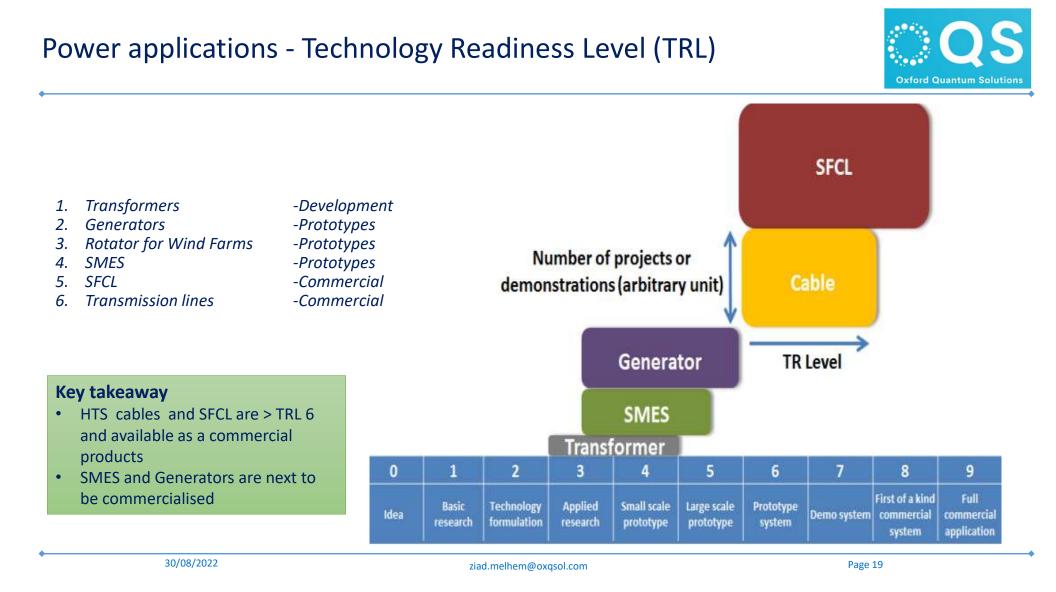

Key takeaway

- Will provide step change in medical care and improve quality of life for so many •
- Potential to be very large commercial market with high field and compact devices •

30/08/2022

ziad.melhem@oxqsol.com





Future fusion devices using HTS – Led by private funds

Source -Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Cambridge, MA USA

ecoswing – SC wind power generation

- **HTS Conductor**
- All roads capability
- Low cost design •
- Low weight design
- Mainstream markets ٠
 - 3.6 MW for onshore and off-shore.
- Cryostat system integration
- Cryogen free for cooling

UNIVERSITY OF TWENTE.

Direct Drive Geared (AMSC) Possible 10MW 4.5MW **5 MW** to go as Generator large as Gearbox 13-15m 10m 20MW Hub with HTS <u>ع</u> 1 💻 **1** 5 Blade Nacelle Tower mTop ~310 to 430t mTop ~ 500t Extrapolated for 10 MW mTop ~750t - 850t mTop ~800t-900t mrop<500t

Conventional

Horizon 2020

European Union Funding for Research & Innovation

Optimized HTS

Direct Drive

Source - Prof. M Noe- HTS Power Applications - _CERN Microsoft PowerPoint - noe-hts power applications-2013-04-28 [Kompatibilitätsmodus] (cern.ch)

- More MW power per footprint
 - reduced in volume by 25%

Main Stream

- Reduced weight by 40%
- HTS current density > 100 x Cu leading to HF and low energy loss
- Retrofitting existing infrastructure with enhanced generation

https://indico.cern.ch/event/445667/contributions/2558522/attachments/1521011/2376146/PI7-01 Kellers EcoSwing final for release.pag

Fraunhofer

30/08/2022

ziad.melhem@oxqsol.com

.

HTS transmission cables > 70

20 projects in the US/>20 Projects in the EU/>20 Projects in South Korea/> 10 Projects in China

Oxford Quantum Solutions

Table 1: HTS Cable Projects in the United States

Project		Long Island 2	HYDR/	A Phase 21	HYD	RA Phase 3 ²	US Navy DC	Cable		
Location	Long I	sland, NY, USA	Yonkers, NY			IL, USA	Florida State University			
Site	Holbro	ook Substation Granite Hil Substations		-Rockview Chicago downto		downtown area Cable at Holt	Center for Advan	ced Møperational		
Status	Abano	doned ^a	Under construction at ConEd substation		Undergoing detailed feasibility assessment		Laboratory testing	1		
Developer	AMS	Table 3: HTS Cal	ble Projec	ts in Europ						
Utility/Host	LIPA	Project					EST PATHS	5	. Petersburg	
In-Grid Start Date	NA	Location	Erron G	Contraction of the second s			Sermany and Switzerland		St. Petersburg, Russia	
End Date	LIPA (operc	Site	Dellbrueg	Essen, Germany Dellbruegge and Herkules Substations		Nexans, Hannover and CERN			and RP-9 Substations	
Type (AC or DC)	AC	Co. L.	Operatio			la darian stana		Cable fabrication underway		
Phases	3	Status Developer	0.0010.00100	550235		See Note 2	In design stage		R&D Center of FGC UES ³	
Geometry	Coa	Developer	KIT I	RWE Deutschland, and S		See Note .	RELADE .		NOLD CENTER OF FOC UES -	
Voltage	138	Utility/Host	RVVE De	itschland N		Not applicab	lot applicable			
Rated Current	240((Cab 800	Start Date	March 2					FGC UES	operation in 2016	
		End Date	~ 2016							
Length	600	Туре	AC	Project		rolects in Jo	Asahi		JeJu Island D	
Fault Current	51 k	N		Location	CANADA BARANA		Yokohama, Japan		lelu Island, South Korea	
	[~14(Geometry	Tri-axial	Site			Asahi Substation		GumAk-Hanlim Substations	
Dielectric Design	Cold	Voltage	10 kV	Status			Completed initial test 1		Operational	
Dielectric Material	LPP	Rated Current	2.3 kA (Developer			METI/NEDO/Sumitorno 2		KEPCO/LS Cable/KERI	
HTS Material	YBCC	Length	1 km	Utility/Host			TEPCO		KEPCO/ LS CUBIE/ KEKI	
HTS Conductor AM		Fault Current	20 kA (:	Start Date			Oct. 30, 2012 3		October 2014	
Supplier/Fabricator	-	Dielectric Design	Sidn Dale			Dec. 2013 (see note on Status)		2016		
AC Loss	Not c	Dielectric Material	LPP	Туре			AC		DC	
Cable Fabrication	Nexc	HTS Material	BSCCO			3			1	
Refrigeration	6 kV syster	HTS Conductor	Sumitom			Trioc	Triad		Coaxial DC	
	1	Supplier/Fabricator		Voltage		661	66 kV		± 80 kV DC	
	<u> </u>	AC Loss	1 W/m	Rated Curren	nt	5 k/	(200 MVA)		3125 A DC	
		Cable Fabrication	Nexans	Length		240	' m		500 m	
		Refrigeration	4 kW @	Fault Current	t	31.5	i kA _{ma} for 2 sec 4		Not available	
			(Messer	Dielectric De	sign	Cold	d dielectric		Cold dielectric	
				Dielectric Ma	aterial	LPP			LPP	
				HTS Materia	d	BSC	со		YBCO	
				HTS Conduct Supplier/Fat		Sum	omot		AMSC	
				AC Loss		0.9	W/m/phase @ 2 k/	(50 Hz), 77 K	Not applicable	
				Cable Fabric	ation	Sum	itomo		LS Cable	
				Refrigeration	n		V @ 77 K. Closed-k nachines IMavekawr		Not available	

3002007192 Strategic Intelligence Update Superconductivity for Power Delivery Applications December 2015.pdf

- 20 projects in the US
- >20 Projects in the EU
- >20 Projects in South Korea
- > 10 Projects in China

ziad.melhem@oxqsol.com

MAGLEV with SC – Serious in Japan and China

Japan - 18 May 2011

- Japanese Government authorizes Central Japan Railway Co to proceed with high speed Maglev link from Tokyo to Osaka by 2045
- speed 580 kph

Japan - June 2015

Chuo Shinkansen Maglev train Achieved 603 Kph (375 miles/hr) in Jun 2015

- 1st phase complete by 2027 Tokyo to Nagoya (40 min for 270 Km)
- 2nd Phase by 2045 Tokyo to Osaka (67 min hr for 500 Km)
- Total cost ~ \$55B
- Using NbTi wire @4K

China - 2030

- Plans for two maglev lines to connect the south China province (Guangdong) with Beijing & Shanghai.
- The new maglev lines will cut travel time
 - Guangzhou to Shanghai to two and a half hours.
 - Guangzhou to Beijing will require just over three hours, halving current travel time by highspeed rail,

Key takeaway - Superconductors will have a significant impact on land transport and environment

ziad.melhem@oxqsol.com

Electric planes with SC – Selected examples

Fully Turbo-electric plane: NASA N3-X

- fuel burn reduction 70%, same range, speed, airpor infrastructure.
- Technology: Hybrid Wing Body, Fully distributed 50....., Superconducting, 7500V, power system

Partial Turboelectric

- Boeing SUGAR Freeze: fuel burn reduction 56% for 900 mile mission, utilizes a truss-braced wing combined with a boundary-layer ingesting fan in an aft tail cone to maximize aerodynamic efficiency.
- The aft fan is powered by a solid oxide fuel cell topping cycle and driven by a superconducting motor with a cryogenic power management system

Empirical Systems Aerospace ECO–150R

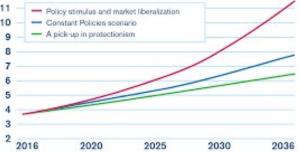
- Matching and significantly exceeding current aircraft fuel burn.
- Technology considered ranges from superconducting electrical machines cooled with liquid hydrogen to conventional machines at various technology levels.

Airbus Advanced Superconducting & Cryogenic Experimental powertrain

Demonstrator (ASCEND) project

Zero-Emission aircraft require

- 1. Energy storage,
- 2. Conversion from energy to propulsion "ASCEND is focus"


Key takeaway – Serious effort to develop electric planes. Opportunities for National Facilities to speed up risk retirement

ziad.melhem@oxqsol.com

Page 23

Global Passengers (billion, segment basis)

Superconductivity for the Future Initiative

Need new thinking on the role of Superconductivity in our future

30/08/2022

ziad.melhem@oxqsol.com

SC Summit initiative - The Vision

Superconductivity has already enabled major advances and capabilities such as MRI, NMR, high magnetic field research and high energy physics accelerators which otherwise would not be possible. In the future, superconductivity will provide a means towards zero emission targets, for example by enabling fusion power, expanding usage of wind power, and facilitating zero-emission transportation, as well as enabling new technologies such as superconducting classical and quantum computing, water purification, new medical diagnosis and therapy tools, and new scientific breakthrough

Superconductivity from the Frontiers end to mainstream technologies

30 August 2022

ziad.melhem@oxqsol.com

SC Summit initiative - The Proposal

- We wish to catalyse this process and fast-track development through an "Initiative for Superconductivity" towards a greener, healthier, prosperous, and sustainable future.
- We propose to hold a Superconductivity Summit at senior executive and decision-making level with the following objectives:
 - Develop and agree on a strategic roadmap for superconducting solutions and commercial products, including a concise list of grand challenges where SC can make a step change and significant impact. This will include:
 - 1. Define and found a collaboration partnership between the SC Science and industrial community, Government, Private Funding, and Big Industries.
 - 2. Develop an "Initiative" including funding on Superconductivity for the Future.
 - 3. Establish a mechanism for sustaining the development of commercial SC solutions and products linked to the 17 SDGs.
- International Organising Committee (IOC)
 Dr. Ziad Melhem, Dr. Joe Minervini, Dr. Luca Bottura, Prof. Susannah
 Speller, Prof. Lance Cooley, Prof. Venkat Selvamanickam, Prof. Stephen
 Gourlay, Dr. Anna Herr, Dr. Kathleen Amm

ziad.melhem@oxqsol.com

31 August 2022

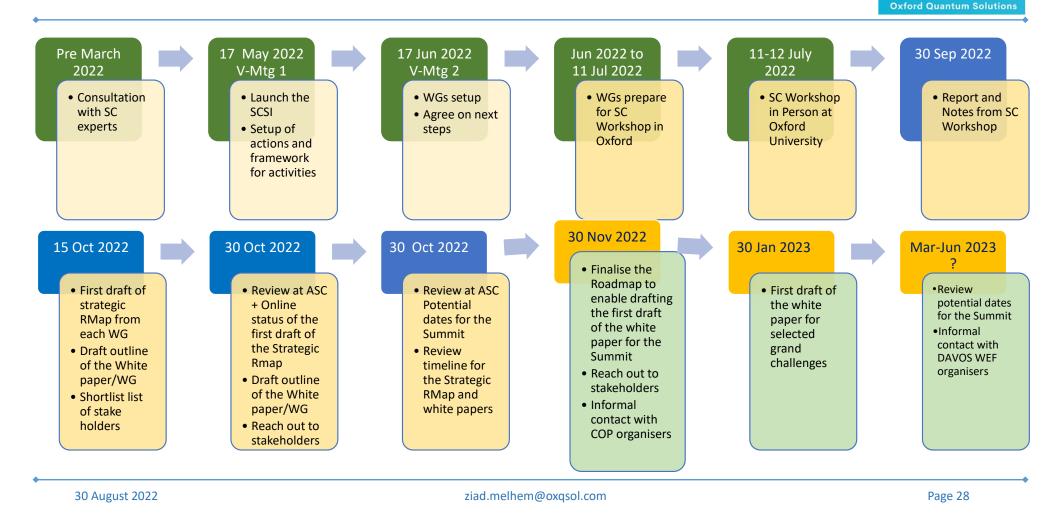
Superconductivity community Research labs Universities Industry Greener healthier **Big industrials** more prosperous Power sustainable Energy future Investors Transport Government funding Healthcare Private funding Manufacture Innovation bodies • Data

Page 26

Oxford Quantum Solutio

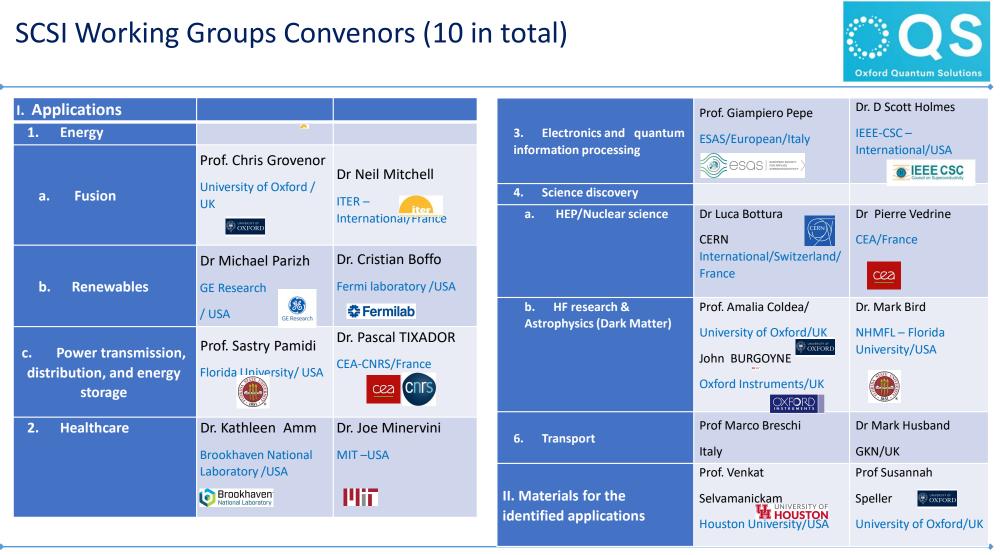
SCSI – Proposed Deliverables

- White paper on grand challenges
- Strategic roadmap for 10 years directly linked with the SDGs including potential funding required
- SCSI targets:
 - Target 1- Superconducting summit at senior level to facilitate the proposed partnership (2023)
 - Target 2- Request for national and private funding of the proposed grand challenges (2023)
 - Target 3- Develop partnership between the SC Community, national and Private funding and Big industrials (2023)
 2023 UN Climate Change
- Mechanisms for raising awareness of the potential from Superconductivity
 - Aim to present the SC initiative at selected International forums, e.g.
 - World economic forum Davos (Jan 2024?)
 - COP28 (Nov 2023) , COP29(Nov 2024)
 - Doha Forum (Mar 2024 ?)
 - Establish regular communications channels
 - Focused market research on grand challenges
- Establish mechanism for sustaining the initiative



ziad.melhem@oxqsol.com

Proposed timeline for SCSI


Strategic Roadmap for 10 years – suggested format/coverage

Identify List of known Roadmaps/reports exist/ available and can be used as a basis for compiling a top level roadmap

WG Theme Ambition				
	4 years	7 Years	10 Years	
Ambition #1				
Ambition #2				
WG Theme Materials needs				
	4 years	7 Years	10 Years	
Need #1				
Need #2				
 WG Technology needs Cryogenic needs WG Instrumentation needs WG End-user needs WG supply chain needs WG skills/training needs WG Societal needs 	5	 WG ecosystem needs WG Cost needs WG competitor technologies WG Funding needs WH partnership and consortia WG Impact statement WG Regulations and global agreements 		

ziad.melhem@oxqsol.com

8/30/2022

ziad.melhem@oxqsol.com

Members (> 70) of the workshop on SCSI initiative and Sponsors of Workshop held at Oxford University 11-12th Jul 2022 **Oxford Quantum Solutions** Current members of the SCSI **5** Fermilab **IEEE CSC** EUROPEAN SOCIETY FOR APPLIED SUPERCONDUCTIVITY British UNIVERSITY OF **OXFORD** Cryogenics Council on Superconductivity Council i ei UNIVERSITY OF HOUSTON BRUKER **F**Fujikura UNIVERSITY OF University of LUVATA Cez Strathclvde Glasgow Advanced Conductor Technologies LLC **GE Research** 藏 umec UNIVERSITY OF tokamak energy University **r**rrrr UK Atomic CAMBRIDGE of Glasgow Enerav BERKELEY LAB **BILFINGER** Authority THE UNIVERSITY OF **UNIVERSITY**OF Commonwealth Fusion Systems Lancaster University CONECTUS WARWICK BIRMINGHAM can iemat superconductors PAUL SCHERRER INSTITUT SUPERNÖDE HEC LIÈGE INFN SuperOx KEK UNIVERSITE PARIS-SACLAY SIEMEN Sponsors of Workshop held at Oxford University 11-12th Jul 2022 Brookhaven National Laboratory British **IOP** Institute of Physics Cryogenics **Oxford** Centre for ouncil Superconductivity Group **Applied Superconductivity** Council on Superconductivity 31 August 2022

ziad.melhem@oxqsol.com