

Customization of Coated Conductors to enhance the Normal Zone Propagation Velocity

Xavier Obradors

Pedro Barusco, Xavier Granados, Teresa Puig Institut de Ciència de Materials de Barcelona, CSIC Bellaterra, Catalonia, Spain Christian Lacroix, Frederic Sirois

Polytechnique Montréal, Chemin de Polytechnique 2500, Montréal, Canada

Outline

Motivation

 \circ The hot-spot issue

 \odot Reasonable Current Contact size

CFD fabrication routes:

1st proposal: Local Annealing
2nd proposal: Local hydrogen Reduction
3rd proposal: Yttria CFD
4rd proposal: Sulfide b-CFD

Conclusion & outlook

Motivation: The hot-spot regime

Video from Sebastian Hellmann – 3M-LS-O2.7 – EUCAS 2015

Superconductor 4mm, Superpower ReBCO-tape 40 µm Cu-stabilization

Motivation: The *hot-spot* **regime**

"... with an NZPV greater than 300 cm s-1, it is possible to achieve a satisfying local thermal stability with relatively short HTS-CCs ..." (* at 365 A)

- Daniele Colangelo and Bertrand Dutoit Supercond. Sci. Technol. 27 124005 (2014)

Designing the Current Contacts Size

Uniform High Interfacial Resistance

10³ 0.000 NZPV (cm/s) 10² Uniform $10^{-3} \Omega$ -cm² Soo ~ O OFF Uniform $10^{-2} \Omega$ -cm² Uniform $10^{-6} \Omega$ -cm² Uniform $10^{-8} \Omega$ -cm² Uniform Experimental 0 10¹ 200 300 400 500 600 700 Current (A)

ReBa₂Cu₃O_{7-δ}
Buffer layer
Hastelloy
Silver (Ag)
Low interfacial resistance
High Interfacial resistance

Designing the Current Contacts Size

COMSOL

• <u>Criteria for Min. Cont. Area</u>: Maximum decrease of 5% in *I*_c

Designing the Current Contacts Size

Criteria for Min. Cont. Area: Maximum decrease of 5% in I_c

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), June 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

1st Proposal: Local Annealing

4. Local Oxygen-Annealing

Local Annealing: Experiment

Local Annealing: Experiment

Length (mm)

2nd Proposal: Local Hydrogen Reduction

2nd Proposal: Local Hydrogen Reduction Experiment

5 cm long Ag coated Gd123-tape

3rd Proposal: The Current Flow Diverter or CFD

Lacroix et al., SUST 35, 055009 (2022)

3rd Proposal: The Current Flow Diverter or CFD

Lacroix et al., SUST 35, 055009 (2022)

4rd Proposal: b-CFD via silver sulfidation

4th Proposal: Sulfidation of the silver for the CFD

4th Proposal: The b-CFD architecture with sulfidation

Partial Sulfidation of the Ag shunt:

4th Proposal: The b-CFD architecture with sulfidation

Partial Sulfidation of the Ag shunt:

4th Proposal: The b-CFD architecture with sulfidation

Partial Sulfidation of the Ag shunt:

Conclusions and Outlook

- In order to safely operate it in the 1000 A range, the highest interfacial resistance in a 12 mm HTS tape, with reasonable current contact size is close to 10⁻⁶ Ω-cm².
- \Box The interfacial resistance threshold for substantially increasing the NZPV in a 12 mm HTS-tape is 10⁻⁶ Ω -cm²
- Annealing the HTS film without silver + locally annealing the tape at the current contacts is a viable way to enhance the NZPV
 - Two extra steps are required to manufacture these tapes
 - Oxygenating the HTS-film without silver takes considerably longer annealing times (*not a problem for batch furnaces)
- The interfacial resistance silver/HTS can be increased considerably without removing the silver coating via Hydrogen reduction.
 - The diffusion of hydrogen through the HTS-film is a major challenge for using H_2 as a reducing agent
- Sulfidation of the silver stabilizer for the **<u>b-CFD</u>** architecture
 - The process can be done with any commercial silver coated tape
 - The NZPV gains are comparable to the classic EPM-CFD for currents below 400 A
 - ✓ The sulfidation process still needs to be tuned for long length tapes above 10 cm

Acknowledgements

Institutions

- Institut of Materials Science of Bacelona (ICMAB-CSIC)
- Polytechnique Montréal (EPM)
- Universitat Politècnica De Catalunya · Barcelona Tech UPC
- Karlsruhe Institute of Technology (KIT)
- CNRS / Institut Neel (NEEL)

□ Industry

- Theva Dünnschichttechnik GmbH
- Relyon Plasma GmbH · Modern plasma technology

🖵 Funding

- FASTGRID project (EU-H2020, Grant no. 721019)
- SUMATE (RTI2018-095853-BC21 and RTI2018-095853-B-C22)
- SUPERENERTECH (PID2021-1272970B)
- SUPERPOWER (TED 2021)
- Generalitat de Catalunya project 2017-SGR 753

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), June 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA, April 2023.

THEV/A

Discussion topics

- High J_c (I_c) coated conductors: key point for all power applications. Proper CC protection against quenching required (I_c fluctuations)
- Issue particularly relevant in Fault Current Limiters and high field magnets: hot spots may degrade or destroy the conductors and limit the maximum current
- Intrinsic quench protection of CCs: consider seriously (NZPV of CCs too low) so they are prone of being destroyed by local heating
- Current Flow Diversion architecture in CCs: a very effective solution to the quench protection problem
- Several approaches being tested to facilitate integration of the CFD architecture to the manufacturing approaches of industrial partners.
- □ ICMAB and UP Montreal are committed to transfer the process to industry