System Integration of Superconducting Tunnel Junction Detectors for Measurement of Unrevealed Material Information

System integration

Superconducting detectors

	Two spectroscopic domains		
Туре	Energy	Time (decay)	Temp.
Calorimeter TES, MMC	Extremely high (1.2 eV@ 6 keV)	Slow (ms)	< 0.1 K
STJ	High (4.1 eV@ 392 V)	Fast (µs)	0.3 K
SSPD (nano-strip)	N/A	Extremely fast (1 ns)	> 4.2 K

Third demand for superconductivity has emerged: high spatial resolution SSPD for synchrotron radiation facilities.

 \mathcal{D}

X-ray Absorption Near Edge Structure (XANES) and X-ray Emission Spectroscopy (XES)

High energy resolution is required for element selection and line shape

100-200 µm

STJ detector

 $\epsilon = 1.7\Delta = 2.6 \text{ meV} (\sim 1 \text{ eV in Si})$ Debye energy(Σ_D) = 24 meV (Nb) The ϵ value, which is a threshold energy to create quasiparticles, is1.7 Δ , M. Kurakado, NIM (1969).

$$\frac{\Delta E}{E} \propto \frac{\sigma_N}{\langle N \rangle},$$

$$\Delta E_{\rm FWHM} = 2.355 \sqrt{F \varepsilon E} = \sim 2 \text{eV}@6 \text{ keV}$$

$$0.5 \text{ eV}@400 \text{ eV} (\text{N-}K \text{ line})$$

Photon counting rate = > 1000 cps/pixel

Real energy resolution @ synchrotron radiation

Energy resolution vs. photon energy of the best pixel

High count rate of the 100-ch STJ system

Fluorescence Yield-XAFS

11

 \mathcal{O}

XAFS of N dopant in SiC (4 x 10¹⁹ cm⁻³) **XANES** experiment **First-principles calculation** а а 3C 1800 °C Absorption [a.u.] Si site Absorption [a.u.] 1400 °C C site SiC:N 4H as-implanted Si sites 380 400 420 440 460 C sites Photon energy [eV] 380 400 420 440 460 Photon energy [eV] b lon channeling b Substitution sites Disorder [10²¹ atoms/cm³] as-implanted 3 2 3C-Si C 1800 °C 3C-C 4H-Si 200 300 400 100 0 Depth [nm]

M. Ohkubo, et al., Sci. Rep. 2, 831 (2012); DOI:10.1038/srep00831.

X-ray emission spectroscopy of C-K

Latest STJ array detector for XAFS and PIXE

Upgrade to 512-1024 pixels

筑波大学 University of Tsukuba

CRAVITY

G. Fujii and M. Ukibe 1024 pixels

6 MeV Van de Graff accelerator

S. Shiki

Microbeam Particle-Induced X-ray Emission (PIXE) with 512 STJs

Summary

- SR: X-ray absorption spectroscopy (XAS) for light elements
- SEM: X-ray emission spectroscopy for light elements
- Ion accelerator: Particle induced X-ray emission (PIXE)
- Astrophysics: neutrino mass determination by far-IR photon spectroscopy (15 - 30 meV range) with Tsukuba Uni.
- Atmospheric escape from planets (FLUXONICS)
- Prebiotic organic molecule in universe (FLUXONICS)
- New trend of SSPD: high spatial resolution (5 meV)

