IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation M3Or1B-03 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.

Polymer Matrix Composites for Light-weighting of Cryogenic Electric Propulsion System

Sreenivas Voleti and Parag Kshirsagar Raytheon Technologies Research Center

Electrification of Propulsion: Cryogenic system

Aerospace Electrification Trends

Challenge:

"Anatomy of a 20 MW Electrified Aircraft: Metrics and Technology Drivers", AIAA Propulsion, 2020; Kshirsagar et. al.

- Orders of magnitude improvements required in distribution system & component performance
- 3X to 4X improvement in power density required over current State-of-the-Art.
- Superconducting (cryogenic) propulsion system can provide such scale-up in power Raytheon Technologies

Electric Propulsion Architecture

- 20 MW superconducting propulsion system
- Distributed propulsion with a multi-MW motor
- Turbine driving a generator to produce electricity
- Cryogenic Fuel
- Fully super-conducting including generator, motors, cables (cryostats), fault current limiters, circuit breakers
- Superconducting coils: MgB₂, ReBCO

Critical Structural Components and their design requirements:

- Motor, Generator
 - Rotor: rotor case/outer wrap: centrifugal forces and thermal stresses
 - Stator: magnetic forces, eddy currents
 - Torque tube/drive shaft: torsional forces and thermal stresses due to gradient
- Cable cryostat: internal pressure from cryogen
- Superconducting motor: 25% to 40% is structural (e.g. driveshaft, casing, end covers, housing, rotor, stator)
- Cryogen storage tanks: internal pressure and thermal stresses, low/no permeability
- Thermal components
 - Cable cryostat, Cryotank: thermal insulation (need low conductivity 'K')
 - Heat exchanger: permit heat flow (high 'K' needed)

Ground-based power cable (Cryogenic) from Nexans

https://www.compositestoda y.com/2013/07/nasa-reachcomposite-cryogenic-fueltank-milestone/

Structural Light-weighting/improving power density

Materials: Fiber reinforced polymer composites, Aluminum and Titanium

- (PMC) Composites have high strength-weight ratios, provide directional reinforcement
- Advantageous where loads are directional (e.g. hoop loads in rotor, pressure tanks)

	stiffness (Modulus E)	yield strength	tensile strength	Density (p)	Stiffness /p	100*Streng th/p
Material	MPa	MPa	MPa	kg/m^3		
Steel	200,000	579	1448	7800	25.6	18.6
Aluminum (2024)	85,000	551	758	2700	31.5	28.1
Titanium (Ti-5AL-2.5 Sn)*	115,000	760	790	4200	27.4	18.8
T800-epoxy- UD tape- Cryo	158,000	N/A	2310	1660	95.2	139.2
Quasi-Isotropic-Cryo (IM7-8551)	64,000	N/A	694	1660	38.6	41.8
CFRP-Unidirectional-RT (IM7-8552)	144,000	N/A	2400	1660	86.7	144.6
CFRP-Quasi-Iso-RT (IM7-8552)	57,230	N/A	717	1660	34.5	43.2

Approximate values for modulus, strength

Cryogenic performances of T700 and T800 carbon fibre- epoxy laminates, Wei, 2015

Fiber-reinforced polymer Composites in Commercial Aviation:

FRP Composites are mature:

- Since 4 decades, pace increased significantly in the 90's.
- Composites form 50% by weight of a Boeing 787
- Electric aviation will need composites, and other forms of light-weighting, to achieve 3X improvements in power density
- Challenge for cryogenics community:
 - To adapt them to aviation cryogenics
 - Changes in material response, thermal stresses from cool-down, thermal gradient, permeability
- Current cryogenic applications
 - G10: glass fiber with epoxy (low strength)
 - Cryostats

Raytheon

<u>Fechnoloaies</u>

- LH2 tanks produced by NASA/Boeing
- Zylon-fiber composite, pulsed magnet at NHMFL

5.5m dia. NASA LH2 tank

Fiber reinforced Composites- Thermo-structural assessment needed at 3 length scales

- Micro-scale (fiber, matrix of resin): ~ 59 microns.
- -Meso-scale: ply (inter-ply) level; 0.5mm
- –Macro-scale (structural component e.g. rotor, tank): centimeters to meters
- -Challenges:
 - Different coefficient of thermal expansion between polymer and fiber
 - Polymer property changes during cooldown

Composite properties at cryogenic temperatures:

- Polymers become stiffer, and less compliant (~ 1.5X modulus, 2X strength)- plots below for effect of low temperature
- Similar response in composites. Data for T700/epoxy UD tape in 0 and 90 degrees (right) show stiffness, strength improve in composite

Brem et. al., Elasticity, plasticity and fracture toughness at a mbient, Cryogenics, 2021

Yang et. al., Prediction on Residual Stresses of Carbon/Epoxy Composite at Cryogenic Temperature; Poly. Comp, 2019

Fracture toughness of composites cryogenic temperatures:

- Fracture toughness (FT): resistance of material to crack growth
 - Depends on polymer, and the ply definition
 - Ply angles at interface of crack- can allow crack to jump across plies rather than propagate between plies
 - Ply architecture: plain weave fabric showed higher toughness than UD tape. Undulating tow architecture may help. Braids have similar undulations.
 - PW glass-epoxy fracture tests showed an increase and then decrease of GIc. Lower temperatures involved fibermatrix interfacial failure rather than matrix failure
 - Additives/inclusions improve FT in some cases
 - Alumina nanoparticles improved toughness in UD CFRPs at 9% conc.
 - Elastomeric particles

Temp.	MCC method	Area method	
R.T.	0.646	0.631	Shindo et. al
$77~{ m K}$	0.975	0.728	JEINIT, 2001,
$4~{ m K}$	0.664	0.598	

Betw een plies

Betw een plies

Thermal stresses at individual fiber scale (due to cooling):

- Unit cell model for a single fiber and surrounding matrix (~60% volume fraction):
 - Cooled isothermally from 400K to 20K
 - Carbon fiber & epoxy matrix (977-2)
 - Fiber prevents matrix from shrinking
 - Tensile stresses in matrix (polymer) cause microcracks. Failure strength of polymer ~ 100 MPa*
 - Fiber-matrix interface also pre-stressed

Properties taken from "Choi & Bhavanishankar, Micromechanical Analysis of Composite Laminates at Cryogenic Temperatures", J. Comp. Mat.; 2005

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), No. 50, October 2021. Invited presentation M3Or1B-03 given at CEC-ICMC 2021, July 19-23, 2021, Virtual.

Thermal stresses in laminae due to cooling (meso-scale):

- Two laminae with [0/90] ply angles: worst-case layup for thermal stresses (0.120 mm thick):
 - Fibers prevent contraction along their length. Matrix contracts more.
 - Plies warped out-of-plane in two directions
 - Transverse strength of lamina at cryogenic temperatures: 90 MPa to 120 MPa

Thermal stresses at macro-scale i.e. component level :

- Rotor over-wrap for holding magnets during high-speed rotation: 0.25m diameter, 0.1 m long
- Carbon-epoxy (IM7/977-2): Layup- [90/45/90/45/90/0/0/0]
- Cooldown from 400K to 20K:
 - Interlaminar stresses at edges due to unequal contraction
 - Distortion function of component geometry, ply layup

Challenges and Mitigation methods

- Thermal stresses at micro-scale:
 - Choice of fiber (design)
 - Higher strength polymers- with fillers (materials)
 - Interfacial strength (materials)
- Thermal Distortion and Failure of component
 - Optimize Layup, ply architecture (design)
 - Macro-microscale computational modeling (Mechanics)
 - Validated ply-level failure theory for cryogenic temp. (Mechanics)
- Material properties at cryogenic temperatures
 - Stress-strain characterization of PMCs at cryogenic temperatures
- Permeability to cryogens: reduced micro-damage, liners

0-90 laminae interface

0-45 laminae interface

Composites Development for Cryogenic Components: Approach

Summary and Challenges/gaps

Fiber-reinforced and particle-embedded polymer composites have demonstrated their maturity in aerospace. Challenges are in adapting to cryogenics.

- Polymer matrix composites routinely used in commercial aviation structures for lightweighting. Applicable to cryogenic regime.
- Cryogenic applications exist, though not widespread.
- In cryogenic regime, weight reductions of 20%-40% have been reported for tanks
- Challenges in adapting to cryogenics:
 - Materials (polymers):
 - Improvement of polymer capability for toughness, durability
 - Multifunctional polymers (thermally conductive, fillers for magnetic permeability)
 - Material behavior and properties at cryogenic temperatures:
 - Test data for specific systems for static, fatigue and durability
 - Computational modeling and Design:
 - Multi-scale modeling approach needed, design optimization to reduce thermal stresses, failure criteria at cryogenic scale

