

Overview on progress, challenges and frontier research of coated conductors for application

Institut de Ciència de Materials de Barcelona ICMAB-CSIC, Bellaterra, Spain

plenary talk

Acknowledgements

X. Obradors, J Gutierrez, X. Granados, S. Ricart, ICMAB-C	CSIC
K. Matsumoto, Kyushu Institute of Technology	
T. Haugan, US AFRL	
T. Kiss, Kyushu University	
V. Selvamanickam, University of Houston	
B. Holzapfel, Karlsruhe Insititute of Technology	
L. Bottura, S. Calatroni, CERN	
J. Wu, University of Kansas	
D. Larbalestier, High Magnet Lab. Tallahassee	
Y. iijima, Fujikura Ltd.	and entire Coated Conductor community
S. Lee, A. Molodyk, Faraday Factory Japan LLC	
Z. Yifei, D. Hazelton, Superpower Inc.	
Y. Yamada, B. Song, Shanghai Superconductor Technolog	sy Co, Ltd
C. Hinze, W. Pruseit, Theva GmbH	
H. Lee, S. Moon, Sunam Co, Ltd	
C. Cai, Shanghai Creative Superconductors Co, Ltd	

Outline

- Introduction
- Fundamental aspects of coated conductor (CC) processing: towards high growth rate
- Capacity for tuning vortex pinning landscape
- Applications driven relevant materials aspects
- Status at industrial scale, prospects and challenges
- Materials R&D challenges and initiatives
- Conclusions and take away message

SUPERCONDUCTING MATERIALS: AT THE FRONTIER OF TECHNOLOGY

The prospects of hightemperature superconductors

Overcoming cost barriers could make high-temperature superconductors pervasive

By Alexander Molodyk¹ and David C. Larbalestier²

"...the present outlook for high-temperature superconductor materials and their industrial applications is historic..."

Science, 380, 1220, 2023

COMPACT FUSION

HTS-CC NMR is already a commercial device

High-field (25.9 T LTS+HTS) Bruker Analytical NMR

https://www.bruker.com

Strong pull for:

Electric aviation: Rotating machines

Smart grid: Power cables, FCL, SMES

https://www.theva.com/superlink https://www.nkt.com 110 kV, 12 km, 500 MVA

Accelerator physics: Complex high field magnets operating at higher temperatures

Feather M2 HTS dipole accelerator magnet

L. Rossi, C. Senatore, Instruments 5(1), 8 (2021)

T. Puig – EUCAS2023 7/45

COATED CONDUCTOR, CC

T. Puig –EUCAS2023

plenarv talk

8/45

(Long length and thick) epitaxial superconducting layer on a multilayer flexible architecture

Fundamental aspects of CC film growth

- 1. Nucleation
- 2. Coarsening
- 3. Coalescence
- 4. Grain boundary zipping
- 5. Continuous film

Nucleation rate

$$\dot{N} \propto \exp\left(-\frac{\Delta G^*}{k_B T}\right)$$

Surface energy: $\gamma_{A,} \gamma_{B}$ Interface energy: γ_{i} Elastic strain energy: ε

X. Obradors, T. Puig, et al, Chem. Soc. Rev, 2014

REBCO growth processing

 P_{ad} = ad-atoms pressure at surface growth front

Growth rate: G= 0.5-25 nm/s

G= 0.5-5 nm/s

T. Puig et al, Nat Rev Phys (2023, accepted), J. Driscoll et al, Nat Rev Mat (2021)

G=10-1000 nm/s

T. Puig – EUCAS2023 10/45

11/40

Reaching high Growth Rate: A path towards cost reduction

T. Puig et al, Nat Rev Phys (2023, accepted)

T. Puig – EUCAS2023 12/45

Materials processing challenges

to decrease cost/performance ratio

	PLD	MOCVD	ME	TFA-CSD	RCE-DR	TLAG-CSD
High performance						
High homogeneity in long length						To demonstrate
Large area processing						
High thickness (> 3 μm)						To demonstrate
High growth rate						
Low cost equipment						
High manufacturing yield						To demonstrate

Different growth methods have adopted different approaches to achieve competitiveness

AFRL

Historical progress of APC

Flux pinning progress $J_c(77K, 1T, 5T)$, 1995 to 2020

14/45

Capacity for tuning vortex pinning depends on type of defect, size,

chemical composition, orientation, strength and dimensionality

Tc = 90 K

 $B \sim 12 T$

The complex microstructure of CC with twin boundaries (2D), stacking faults (2D), dislocations (1D), nanostrain (3D), oxygen vacancies (0D), and APC defines $J_c(\theta, H, T)$

R. Willa et al , SUST 31 (2018), I.A. Sadovskyy et al, PNAS 116 (2019), F. Valles, Comm Mat 3 (2022)

15/45T. Puig –EUCAS2023 plenarv talk

Nanocomposites: The best Artificial Pinning Centres

See SUST Special issue on APC 2018

EXCELENCIA INSTITUT DE CIÊNCIA DE MATERIALS DE BARCELONA EXECUENCIA EXECUENCIA SEVERO OCHOA

TFA-MOD, RCE-DR, TLAG-CSD

Sequential nanocomposite growth method

N. Chamorro, RSC Adv. (2020)

C. Cantoni et al , ACSNano (2011)

Majkic, G. et al. SUST 33 (2020)

T. Puig – EUCAS2023 16/45

Simultaneous growth of Nanocomposites Low versus high growth rate

Grown at 0.6 nm/s

Y. Yoshida et al, SUST 30 (2017)

EXCELENCIA SEVERO OCHOA

17/45

plenarv talk

Vortex pinning consequences at high growth rate: PLD-HR

Sequential growth of Nanocomposites at high growth rate: **TFA vs TLAG** TLAG-CSD (50-2000 nm/s)

(0.5-1 nm/s)TFA-MOD

with preformed Np

Small randomly oriented Np are obtained

 J_{c} (77K, sf)~ 5 MA/cm²

T. Izumi, K. Nakaoka, SUST., 31 (2018) M. Miura et al, NPG Asia Materials 9 (2017)

Z.Li et al, Sci. Rep 9 (2019)

BHO

J_c (77K, sf)~ 5.5 MA/cm² J_c (26K, 6T)~ 11 MA/cm²

BZO 10nm **BZO** 6nm BZO 6nm 2nm BZO STO 20 nm

Pristine YBCO film

L. Soler et al., Nat Comm (2020) S. Rasi, et al, Advance Science (2022)

EXCELENCIA SEVERO OCHOA

19/45

Small epitaxial oriented Np and high defect density are reached

T. Puig –EUCAS2023

plenarv talk

Vortex pinning consequences at high growth rate: TLAG-CSD **VORTER**

Vortex pinning landscape of CC, $J_{c}(\theta, H, T)$

H,

F. Valles et al, Comm Mat 3(2022) T. Puig et al, Nat Rev Phys (2023, accepted)

T. Puig – EUCAS2023 21/45

EXCELENCIA SEVERO OCHOA

$J_c(T, H, \varepsilon)$ dependence on axial strain in the complex pinning landscapes of CC

0.8

J_c(D_o, H, T) dependence on particles irradiation of CC: effect on complex microstructures

250 MeV Au ions + 4 MeV protons in AMSC MOD nanocomposite films

K J Kihlstrom et al SUST 34, (2021)

Irradiation effects are very relevant for Fusion application (refer to S. Speller talk Tu.) T. Puig -EUCAS2023 45 Plenary talk

Other application driven relevant materials aspects: from CC to conductor

Coated Conductor tape:

- Engineering current density, J_e
- Homogeneity and uniformity
- Mechanical strength
- Fatigue
- Splicing
- Quench protection
- Ac losses
- Radiation damage, ...

Conductor wire:

- Conductor configuration (current sharing, transposition, ...)
- Conductor bending radius
- Winding methodologies (impregnation, winding guides,...)
- Insulated, non-Insulated, partially insulated wiring
- Thermal stress, mechanical resilience, quench management, ac-losses,

March 2023 *T. Puig – EUCAS2023* 25/45

A. Ballarino, HiTAT Workshop, Geneva,

Status of CC fabrication at Industrial scale

					CSIC	
Consolidated product	Growth method	Textured substrate	REBCO materials	Main APC	MOD EVAPORATION	PLD
FARADAY FACTORY	PLD	IBAD	ҮВСО	Y ₂ O ₃ nanoparticle	RCE-DR	
			GdBCO			
FFUJIKUCA	PLD	IBAD	EuBCO	BHO nanorod		
			GdBCO		R&D product	[
Shanghai Superconductor 上海超导"Technology	PLD				HIGH TEMPERATURE SUPERCONDUCTORS	PLD
SuperPower [®]	MOCVD	CVD		PLD	SuNAM	PLD
THEVA	ME	RC	E-DR MOCVD	SWCC	MOD	
	RCE-DR					MOD
上创越导 Shanghai Creative Superconductors	MOD	IBAD	YBCO	BZO nanoparticle	METOX	MOCVD
EE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (glob	al edition), Issue No. 54, (Dctober 2023. Plenary preser	ntation given at EUCAS 2023	3, Sept. 6, 2023, Bologna, Italy	T. Puig –EUCAS2	202;

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA

New horizons at Faraday Group (PLD method)

Multi GA-m factories vision (mid-2020's) Next-gen production unit (600W laser + 2 chambers)

Fits well into standard logistics center

February – received equipment, April – started operation If R&D successful, there's potential to reach **1 GA-m/year with only 5 units**

Scaling up PLD major raw materials (PLD targets)


```
T. Puig – EUCAS2023 27/45
```

5000 m² unit $I_c L = 1$ GA-m/year for 2024 (2500 tapes x 600 A (20T, 20K) x 700 m) (12 mm eq.)

We are up to build more modular plants as demand unveils

CCA-2023, University of Houston, UH Hilton, Texas, USA, 3-6 April 2023 1300 km/yr (12 mm) in 2023 25000 km/yr (12 mm) in 2028

IEEE-CSC, ESAS and CSSJ SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue No. 54, October 2023. Plenary presentation given at EUCAS 2023, Sept. 6, 2023, Bologna, Italy

Shanghai Superconductor Technology (SST) (PLD method)

Plant #1 (Upgrading of existing

Zhangjiang Hi-tech Park, Shanghai

plant)

km/yr

Plant #2 (New) Kanggiao Industrial Park, Shanghai

3500 3000 2880 3000 2500 2000 1640 1500 1000 700 500 500 10001100 0 2025 2022 2023 2024 2026 Plant #1 Plant #2 Plant #3 -O-Total Capacity

Plant #3 (New)

Aviation Harbour Demonstration Park, Hefei

IEEE-CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), Issue 53, July 2023. Presentation given at Coated Conductors for Applications Workshop, Houston, TX, USA. April 2023

上海超导

SST Production Capacity Outlook

Prospects for Fujikura (PLD-Hot wall method)

Annual production more than double for 2025

- Increase growth rate
- Increase number of production units
- Improve modernization of production managements

Uniformity needs to be mantained

■ Magnetic measurement @Tapestar[™] (4mm-wide with AP / FESC-SCH04)

SuperPower's new wire manufacturing facility in Glenville, New York, US (MOCVD method)

New IBAD system At present: ~200 km/yr. (4mm eq.)

Phase 1 expansion (end of 2023): ~600 km/yr. (4mm wide eq.)

New MOCVD systems

Phase 2 expansion (~end of 2025): ~1,200 km/yr. (4mm wide eq.)

T. Puig –EUCAS2023 30/45

Current development progress in SuNAM (RCE-DR method)

RCE-DR system

120 mm-w Electro-polishing

PLD system

Present: 400 km/yr (4 mm eq.)

Target 2025: x 2.5 production capacity 125 mm wide tapes

Real-time (AI) is used for CC surface analysis

Development of a new process:
→ Seed layer : PLD system
→ Thick REBCO layer: RCE-DR system

Shanghai Creative Superconductors, SCSC Industrial production lines (TFA-MOD method)

Buffer layer texturing

Polishing

Coating and growth of the Superconducting layer

Present: 400 km/yr (4 mm)

New production line under construction for 40 mm wide tapes

x 7 production capacity increase in 2025

Packaging

Status of CC materials at industrial scale and prospects

7 consolidated companies

Magnitude	At present	Target for 2025	Target for 2028	$\overline{\diamond}^{250}$
Length (km)	0.5 – 1	1-(5)		200
Width (mm)	2, 3, 4, 6, 12	40, 80, 100, 125		te 150
Production (km/yr) <i>12 mm equiv.</i>	3000 - 5000	6000 -10000	+40000 (+25000 Faraday)	$\begin{bmatrix} 4 & 4 & 100 \\ 4 & 4 & 50 \\ 5 & 50 \\ 5 & 0 \\ 2022 & 2024 & 2026 & 2028 & 2030 \end{bmatrix}$
	HTS tap	Average selling price	S. Lee, Faraday Group, C 2013 2014 2015 2016 2017 2019 2019 2019 2019 2019 2019 2018 [Price] = X	Year "HTS price will catch LTS with a 10-fold volume increase" [Sales GAm/year] ^{-0.22}
EE-CSC, ESAS and CSSJ SUPERCONDU EUCAS 2023, Sept. 6, 2023, Bologna, Ital	ICTIVITY NEWS FORUM (global edition ly), Issue No. 54, October 2023. Plenary prese	ntation given	T. Puig –EUCAS2023 34/45 plenary talk 34/45

CC Industry application target

EXCELENCIA EVENTIVIT DE CIÈNCIA DE MATERIALS DE BARCELONA ENTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA EXCELENCIA DE DE DE DE LA CENTRA DE LA CE

AGNETIC

FIELD LABORATORY

7 consolidated companies

S. Hahn et al, Nature 570, 496 (2019)

T. Puig – EUCAS2023 35/45

The industrial vision of CC in a sentence

37/45

T. Puig -EUCAS2023

Plenary talk

"Coated conductors would advance steadily as the unique practical wires available for emerging applications used in really large field, or severe thermal conditions"

"Prospective sustainable market of HTS materials and applications promises numerous public benefits for much human activity in energy production, distribution, and use; medicine; transportation; and research"

"Innovative manufacturing technology is the key to scale up the production and reduce the cost"

"Faster, Higher, Stronger – Together (Olympic motto). Citius, Altius, Fortius - Communis. What is the final goal for you instead of Gold Medal?"

"In the long run, coated conductor HTS will become a commodity product, opening up the opportunity to fuel a wide market of energy applications rather than just a few very special, experimental prototypes"

"New paradigm designer of electric energy"

"The superconductor is hard to resist, but the harder is more valuable. The latest progress on superconducting coated conductors is realizing our dream for various superconducting applications"

Materials R&D challenges and initiatives

Joining the CC industry to develop further:

- Novel High-Throughput methods and processes
- Fast screening methodologies and machine learning approaches
- Semi-industrial R&D scales
- Databases and standarization of wide range of CC properties

High Throughput Experimentation using Compositional WICMAB Gradients and TLAG growth CS in-situ synchrotron XRD

95.00

- 85.00

- 75.00

- 65.00

- 55.00

- 45.00

- 35.00

- 25.00

UNIVERSITY of HOUSTON Double-sided REBCO tapes by Advanced MOCVD

Double-sided REBCO 2x 2.5 μm thick film in a single step: I_c> 500 A/4mm at 20 K, 20 T, 15cm (3.5 x I_c commercial tape) Double-sided REBCO 2x 5 μm thick film 10 x I_c commercial tape

- 20 m good quality textured buffered double-sided substate
- Similar nanorods microstructure in both sides (15%Zr)
- Comparable mechanical properties as single side (~ 575 MPa)
- Current sharing can be fostered to promote defect-tolerance

Towards double-sided 50 m tapes Next 500 m @ \$10/kA-m at 20K, 20T

Data driven approach coupling high throughput measurement and ML

🖌 KYUSHU UNIVERSITY

Takanobu Kiss (KU), 2-MS-NC2-01, EUCASv2023, Bologna, Italy, Sept. 5, 2023

KC4: KIT-CERN Collaboration on Coated Conductor

Equipment from Bruker HTS CC pilot plant ₂₈

Intermediate 20m length scale

Extension to 100m+ length scale

Core KC4 Lab space > 500 m²

A joint, Open Lab Foundry of HTS **CC** synthesis:

Gap bridge between small scale materials research on CC and larger scale tailored, high quality full **Coated Conductor architectures**

2027

42/45

Plenary talk

T. Puig -EUCAS2023

Need of Standardization and Open databases of CCs

Robinson Research Institute High-Temperature Superconducting Wire Critical Current Database, $J_c(T,H,\theta)$ - S. Wimbushhttp://www.victoria.ac.nz/robinson/hts-wire-database

Additional opportunities for CC **Case of RF cavities at high magnetic fields for HEP** High-Q RF cavities at high H for Dark Matter search **High energy circular** (Axion haloscopes) **Collider Beam screen** D K RAD.ES cooling channels b 0.04 Current (A/m) 0.02 5.25e+05 + 4.5e+05 4e+05 Surface 3.5e+05 -0.02 3e+05 HTS-Cu 2.5e+05 EXCELENCIA hybrid 2e+05 -0.04 1.5e+05 coating 100000 -50000 UPC J. Golm et al, IEEE TAS 32 (2022) D. Ahn et al, Phys Rev Appl 17 (2022) Q ~ 6x10⁴ @ 11T, 4.2 K (8 GHz)

Opportunities in

Muon collider

Collider

Collaboration

iFAST

D. Ahn et al, Phys Rev Appl 17 (2022) Q ~ 3.3x10⁵ @ 8T, 4.2 K (6.9 GHz) Q ~ 1.3x10⁷ @ 8 T, 150 mK (5.4 GHz) (200 x Q_{cu})

G. T. Telles et al, SUST 36 (2023)

ALBA

IFAE

Conclusions and take away message

45/45

T. Puia –E

- Coated conductors are unique superconducting materials that are set to enable numerous applications for our welfare society
- Only with an understanding of materials, vortex physics and engineering properties can superconducting devices emerge
- After 20 years of R&D on coated conductors, the CC industry is ready to take the big step to scale up production
- Applications such as fusion, NMR and power cables, but also electrical transportation are quite ready to make the necessary pull
- R&D in CC must persist to help improve the capabilities, robustness and cost of next generation devices and make of CCs a persistent enabling technology
- We started 20 years ago chasing a dream and we didn't give up. We are here to make it come true, and now we are very close, we feel it in the ambience