
SQUID Th d NSQUIDs: Then and Now

• SQUIDs: Then

• SQUIDs: Now• SQUIDs: Now

• The diversity of SQUIDs
• Ultralow field magnetic resonance imagingUltralow field magnetic resonance imaging
• Cold dark matter: The hunt for the axion

History Day
Superconductivity Centennial Conference
Den Haag

Support:
DOE Basic Energy Sciences
DOE High Energy Physicsg

The Netherlands
September 21, 2011

g gy y
National Institutes of Health 
BBN Technologies

1 of 45



SQUIDs Then
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Brian Josephson Explains Tunneling

Courtesy Brian Josephson

3 of 45



 

Flux Quantization

= n 0  = n (n = 0, ±1, ±2, ...)
where
 ≡ h/2e ≈ 2 x 10-15 Tm2

J

0 ≡ h/2e ≈ 2 x 10 Tm
is the flux quantum

Half-centennial!

Vibrating s/c tube in a coil

Torque on a s/c tube

Deaver and Fairbank 1961                Doll and Näbauer 1961
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Josephson Tunneling

Sn-SnOx-PbSuperconductor 1 Superconductor 2

Insulating
barrier

S S O b
1.5 KI

Superconductor 1 Superconductor 2

~ 20 Å

I

V

0.006 G
I = I0 sin
 = 1 – 2

d/dt = 2eV/ħ
0.4 G

d/dt = 2eV/ħ
= 2V/0

Anderson and Rowell 1963Josephson 1962
Half-Centennial Next Year!
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Birth of the Superconducting
Quantum Interference Device (SQUID)Quantum Interference Device (SQUID)

I

Sn-SnOx-Sn junctions

 V

• Critical current versus applied magnetic field for two different junction spacings
• Rapid oscillations due to interference, slow oscillations due to diffraction

Jaklevic, Lambe, Silver and Mercereau 1964

• Essential physics analogous to two-slit interference in optics 
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Sir Brian Pippard Serves Tea to Lady Bragg

A t 1964 B i t th tAutumn 1964: Brian suggests that a 
SQUID would make an exquisitely 
sensitive voltmeter

Courtesy Cavendish Laboratory
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The SLUG 
(Superconducting Low-Inductance Undulatory Galvanometer)

NiobiumNb wire 
and solder IB

ol
ta

ge

I
B

Copper

VoI

5 mm

SnPb 
solder Current IB in niobium wire

V

JC February 1965IB
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The SLUG as a Voltmeter

Niobium Voltage noiseVoltage noise
10 fVHz-1/2

1 

Copper VCopper

Solder

V

5 mm
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John Wires up a SLUG

Courtesy Gordon Donaldson
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Other SQUID
DesignsDesigns

NiobiumNiobium 
structures

Zimmerman and Silver 1966
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Adjustable Niobium SQUID

0.03′′ Nb wire
Nb wire
and foil

0.001′′ Nb foil0.001  Nb foil

0.001′′ mylar

Beasley and Webb 1967
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Thin-Film Cylindrical SQUID
• Nb NbOx PbIn• Nb-NbOx-PbIn

junctions
• Shadow masks

5 mm

Goubau, Ketchen, JC 197410-14 tesla Hz-1/2 (10 fTHz-1/2)
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SQUIDs Now
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Nb-AlOx-Nb Tunnel JunctionsNb AlOx Nb Tunnel Junctions 

Trilayer processTrilayer process

• Deposit Nb film as base electrode
• Deposit Al film
• Grow AlOx layer thermally in O2
• Deposit Nb film as counter electrodeepos t Nb as cou te e ect ode

St d d f ll l T l t iStandard process for all low-Tc electronics

Rowell et al. 1981
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Thin-Film, Square Washer DC SQUID
• Wafer scale process

• Photolithographic patterning

SQUID with input coil Josephson junctions

500 m 20 m

Ketchen, Jaycox (1981)
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Flux Noise in the SQUID
V

V
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Superconducting Flux Transformer:
Magnetometer

B J

Closed
superconducting

circuit 
J

Room
temperature
electronics

SQUIDMagnetic field noise 
~ 10-15 THz-1/2
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Magnetic Fields

tesla

1 Conventional MRIMagnetic Fields
10-2

10-6

10-4

Earth’s field

10-8

10

Urban noise

Car at 50 m

10-10

Car at 50 m

Human heart

Fetal heart
10-12

10-14
Human brain response

1 femtotesla
10-16

10

SQUID magnetometer
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The Diversity of SQUIDs
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Quantum Design "Evercool" 
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High-Tc SQUIDs Prospecting for Mineral Deposits

C t C th F l CSIROCourtesy Cathy Foley, CSIRO
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Gravity Probe-B
Tests of General RelativityTests of General Relativity

• Geodetic effect—
curved space-time duecurved space time due 
to the presence of the
Earth

• Lense-Thirring effect—
dragging of the local 
space-time frame due to 
rotation

Courtesy StanfordCourtesy Stanford 
University and NASA
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MiniGRAIL: Gravitational Wave Antenna
L id U i itLeiden University

• Spherical gravitational wave
detector
T t 20 K• Temperature: 20 mK

• Diameter: 650 mm
• Resonance frequency: 3160 Hz
• Motion coupled to a transducer 
that amplifies the motion, and 
couples flux into a dc SQUIDcouples flux into a dc SQUID

• Quantum limited strain 
sensitivity: dL/L ~ 4 × 10−21

24 of 45



SPT: South Pole Telescope
• Antarctica 9 500 feet• Antarctica 9,500 feet
• 10 meter dish
• 960 Transition Edges Sensors with 
multiplexed SQUID readoutmultiplexed SQUID readout
• SPT will survey 4,000 square degrees 
of sky in the next two years, and is 
expected to find large numbers of galaxy 
lclusters.

The Bullet Cluster
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CardioMag Imaging System for 
MagnetocardiographyMagnetocardiography
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300-Channel SQUID Systems for 
Magnetoencephalography (MEG)
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Ultralow Field
Magnetic Resonance Imaging Magnetic Resonance Imaging 
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High-Field Magnetic Resonance Imaging

• Magnetic field B0 = 1.5 T 

• Proton NMR frequency q y
0 ≈ 64 MHz
• What if we were to lower 
h i fi ld dthe magnetic field and NMR 

frequency by a factor of 104?

Courtesy GE, Inc.
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ULF MRI Coil Geometry
Bx compensation coil

Low noise cryostat containing SQUID

Gradient coilsGradient coils

B0 coil (measurement field)
B1 coil (excitation field)
Bp coil (prepolarization field)

B = 132 TB0 = 132 T
0 = 5600 Hz

• Gradient fields define voxels in space in the same way as in high-field MRI 
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Three-Dimensional In Vivo Images 
of the Armof the Arm

20 mm
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T1-Weighted Contrast Imaging

• If two different types of tissue have the same proton density, 
a conventional MRI pulse sequence may not distinguish them.

• T1 depends strongly on the environment, and can be used 
to differentiate tissues types using a T1-contrast pulse sequence.

• T1 contrast can be much higher in low fields than in high fields.
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Measurements on Ex Vivo Prostate Tissue

• Malignant prostate removed surgically at UCSF hospital.

• Pathologist cuts two small tissue samples one healthy and one• Pathologist cuts two small tissue samples, one healthy and one 
cancerous (Blind: we do not know which is which).

• Samples rushed to Berkeley in a biohazard bag placed on iceSamples rushed to Berkeley in a biohazard bag placed on ice.

• T1s measured: T1A > T1B

• Specimens are returned to UCSF where the pathologist 
characterizes a thin slice of each specimen.
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Contrast (T1A − T1B)/T1A vs. % Difference in 
Tumor Content for each Specimen PairTumor Content for each Specimen Pair

B
)/T

1A

35 patients

δ 
=

T 1
A
−

T 1
B

(T

• T (100% normal) = (1 43 ± 0 10) T (100% tumor)

(% tumor)B − (% tumor)A

• T1(100% normal) = (1.43 ± 0.10) T1(100% tumor)

• Sufficient for in vivo T1-wighted contrast imaging
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T1-Map of Prostate Slice1 p

• Dark lines indicate histology, 
which is performed on a thin slice.

T i d th• T1 map is averaged over the 
entire thickness. 
• Map clearly shows T1 contrast

• Tissue identified through histological mapping
• Tissue is healthy unless labeled otherwise
• X + Y: Gleason score of tumors; 5 is the most advanced

BPH B i P t ti H l i• BPH: Benign Prostatic Hyperplasia
• GPS: Gland Poor Stroma
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OutlookOutlook

• Microtesla MRI has the advantage of significantly higher 
T1 contrast than high-field MRI.

• Other kinds of cancer: Do other types of tumors show T1yp 1
contrast similar to that of prostate tumors?

• New funding to study ex vivo breast cancer• New funding to study ex vivo breast cancer

• National Institutes of Health provided funding to build a 
prototype system for in vivo imaging of prostate cancer.

• Next step: in vivo imagingp g g
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Cold Dark Matter:
The Hunt for the AxionThe Hunt for the Axion
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Cosmic Microwave Background:g
“The Cosmic Rosetta Stone”

Neutrinos 0.6%
Baryons (ordinary matter) 4.6%Baryons (ordinary matter)              4.6%
Dark Energy (DE) 73%
Cold Dark Matter (CDM) 22%

• Thus 95% of the universe is unknown!
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Cold Dark Matter

A candidate particle is the axion, proposed in       
1978 to explain the absence of a measurable electric 
dipole moment on the neutron

m  1 eV – 1 meV (0 24 - 240 GHz)

Predicted mass:

ma  1 eV 1 meV (0.24 240 GHz)
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Resonant Conversion of Axions into Photons
Pierre Sikivie (1983)

Primakoff Conversion
HEMT* Amplifier

610~ 

Expected Signal

Magnet

Po
w

er 

FrequencyCavity

*High Electron Mobility Transistor                          Need to scan frequency
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Axion Detector atAxion Detector at 
Lawrence Livermore 
National LaboratoryNational Laboratory

• Cooled to 1.5K
• 7 tesla magnet• 7 tesla magnet

Scan Time

Using a HEMT amplifier, time to 
scan the frequency range from

0.24 to 0.48 GHz: 270 years  
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Noise Temperatures of Two SQUID Amplifiers

• In the classical 
limit theory predicts

HEMT TN ≈ 2 K

limit theory predicts
TN   T
• In the quantum

684 MHz

limit: TQL = hf/kB
• Closest approach
to quantum limit:

702 MHz

TQL = 33mK

to quantum limit:
At 799 MHz
TN = 47 ± 5 mK
T = 38 mKTQL = 38 mK
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Scan Time     

• Using a HEMT amplifier, time to scan the frequency range from 
0.24 to 0.48 GHz ≈ 270 years.

• The HEMT has been replaced with a SQUID amplifier.  With the 
system cooled to 50 mK with a dilution refrigerator, time to scan the 
frequency range from 0.24 to 0.48 GHz  ≈ 100 days.

• A SQUID amplifier was successfully operated on the axion• A SQUID amplifier was successfully operated on the axion
detector at 1.5 K to demonstrate proof-of-principle.

Gi h f hi i l h D f E h• Given the success of this trial run, the Department of Energy has
funded the installation of a dilution refrigerator to cool the cavity
and SQUID to 50 mK. This will enable an effective search for theQ
axion over the energy range 1 – 10 eV.
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Epilogue

• SQUIDs are amazingly diverse, with applications in  
physics chemistry biology medicine materials sciencephysics, chemistry, biology, medicine, materials science,  
geophysics, cosmology, quantum information,……..
• SQUIDs are remarkably broadband: 10−4 Hz (geophysics)
to 109 Hz (axion detectors).
• The resolution of SQUID amplifiers is essentially limited 
by Heisenberg’s Uncertainty Principleby Heisenberg s Uncertainty Principle.
• Microtesla MRI, the axion search, and a host of other 
applications, exist only because of the extraordinarily low 

i f h hi h i i lf b inoise of the SQUID—which in itself seems to be a very tiny 
part of the whole system.
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Thank You!
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