SUPERCONDUCTING QUANTUM CIRCUITS: BALANCING ART & ARCHITECTURE

Irfan Siddiqi

Physics Department, UC Berkeley & Lawrence Berkeley National Laboratory

EUCAS 2019 Plenary: Glasgow, UK

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1-5 September 2019, Glasgow, UK.

•

 \bullet

CLASSICAL VERSUS QUANTUM INFORMATION

QUANTUM ALGORITHMS

• A SUPERCONDUCTING QUANTUM BIT

QUANTUM PROCESSORS: MATERIALS & WIRES

• EARLY COMPUTATIONS

• THE ADVANCED QUANTUM TESTBED

THE QUANTUM WORLD AROUND US

A MRI Scan Relies on Quantum Mechanics!

Water molecules have two hydrogens which have nuclear spin (up or down)

QUANTUM SYSTEMS CAN EXIST IN MANY DIFFERENT CONFIGURATIONS, EVEN IF WE CAN'T OBSERVE ALL OF THEM!

THE POWER OF ENTANGLEMENT

- Let's build a computer one spin (quantum bit) at a time !
- Unlike MRI which measures <u>average</u> properties of a group of spins, we need to address each spin individually

- Measurement reveals state to be 1
- If we don't observe, state is (a · + b ·) and described by 2 numbers {a,b}
- Adjacent bit is (c · + d · +) and described by 2 numbers {c,d}
- Couple these two bits and consider product: (a · + b ·) X (c · + d ·)

cannot describe

If a = 0, lose $ac \cdot \uparrow \uparrow$ If d = 0, lose $bd \cdot \downarrow \downarrow$

2^N >> 2N: NEED MORE NUMBERS THAN PARTICLES IN THE UNIVERSE TO DESCRIBE ~ 300 ENTANGLED QUBITS IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1-5 September 2019, Glasgow, UK.

GATE BASED OUANTUM ALGORITHMS

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1- 5 September 2019, Glasgow, UK.

QUANTUM POWER

- Pattern detection / Fourier analysis
- Efficiently searching a large database
- Finding energy (cost) minima
- Matrix math
 - Linear algebra
 - Machine learning
 - Diagonalization

Challenges:

- *i.* Decoherence limits complexity (need >100 gates with 99.9 fidelity)
- *ii. Scaling of classical resources still unknown*
- (data input/output, error correction, ...)

High-tech	 Machine learning and artificial intelligence, such as neural networks Search Bidding strategies for advertisements Cybersecurity Online and product marketing Software verification and validation 	Ì	IBM Alibaba Google Microsoft	Telstra Baidu Samsung
Industrial goods	 Logistics: scheduling, planning, product distribution, routing Automotive: traffic simulation, e-charging station and parking search, autonomous driving Semiconductors: manufacturing, such as chip layout optimization Aerospace: R&D and manufacturing, such as fault-analysis, stronger polymers for airplanes Material science: effective catalytic converters for cars, battery cell research, more-efficient materials for solar cells, and property engineering uses such as OLEDS 		Airbus NASA Northrop Grumman Daimler Raytheon	BMW Volkswagen Lockheed Martin Honeywell Bosch
Chemistry and Pharma	 Catalyst and enzyme design, such as nitrogenase Pharmaceuticals R&D, such as faster drug discovery Bioinformatics, such as genomics Patient diagnostics for health care, such as improved diagnostic capability for MRI 	$\left \right\rangle$	BASF Biogen Dow Chemical	JSR DuPont Amgen
Finance	 Trading strategies Portfolio optimization Asset pricing Risk analysis Fraud detection Market simulation 		J.P. Morgan Commonwealth Bank	Barclays Goldman Sachs
Energy	 Network design Energy distribution Oil well optimization 	}	Dubai Electricity & Water Authority	BP

PURE QUANTUM ROUTINES

Shor Factoring Algorithm:

- Exponential speed up over best known classical algorithms
- Modular arithmetic and period finding (QFT)

Grover Search Algorithm:

- Polynomial speed up over best known classical algorithms \sqrt{n} versus n
- Relies on phase inversion and mean subtraction

$$f(x) = 1 \text{ for } x = x^* \text{ else } f(x) = 0 \qquad |\Psi\rangle = \sum_{\substack{n \text{ entries}}} \alpha_n |x\rangle$$

$$\alpha \underbrace{|}_{x} \stackrel{\text{initially } \frac{1}{\sqrt{n}}}{x} \bigoplus_{\substack{n \text{ or } \frac{1}{2}}} \alpha_n \underbrace{|}_{x} \bigoplus_{\substack{n \text{ or } \frac{1}{2}}} \alpha_n |x\rangle$$

HHL Linear Equation Algorithm:

- Exponential speed up over best known classical algorithms
- Use phase estimation to approximate eigenvalues

arXiv:1802.08227v1

Some Challenges..

- deep quantum circuits (many gates)
- fault tolerance, error correction
- Q-RAM
- often have fine print...

Quantum Algorithms Make use of Entanglement, Superposition, Interference, Projection,..

- need to understand resource allocation
- influence classical algorithms!

HYBRID ALGORITHMS: VQE

OTHER HYBRID ROUTINES: OPTIMIZATION, MACHINE LEARNING, ...

QUANTUM INSPIRED CLASSICAL ROUTINES

Matrix Completion Problem

(see also the Netflix problem):

- i) Sample preference matrix T_{ij} for users (i) and products (j)
- ii) Low rank approximation
- iii) Generate suggestions for users

T (n x m matrix): O[poly(k)poly(mn)] Reduced rank k

Quantum Recommendation System

Iordanis Kerenidis
*^1 and Anupam $\mathrm{Prakash}^{\dagger 2}$

- 1 CNRS, IRIF, Université Paris Diderot, Paris, France and Centre for Quantum Technologies, National University of Singapore, Singapore jkeren@liafa.univ-paris-diderot.fr
- 2 Centre for Quantum Technologies and School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore aprakash@ntu.edu.sg

T (n x m matrix): O[poly(k)polylog(mn)] Reduced rank k

QUANTUM COMPUTING

Major Quantum Computing Advance Made Obsolete by Teenager

• l² - norm sampling

Social Behavior Routines

Quantum-inspired genetic algorithms

Ajit Narayanan and Mark Moore Department of Computer Science University of Exeter Exeter, United Kingdom, EX4 4PT ajit@dcs.exeter.ac.uk

• Interfere different "universes" in parallel

Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem

- Kuk-Hyun Han Dept. of Electrical Engineering, KAIST, 373-1, Kusong-dong Yusong-gu Taejon, 305-701, Republic of Korea khhan@vivaldi.kaist.ac.kr
- Jong-Hwan Kim Dept. of Electrical Engineering, KAIST, 373-1, Kusong-dong Yusong-gu Tacjon, 305-701, Republic of Korea johkim@vivaldi.kaist.ac.kr
- Each gene is a classical superposition
- Use rotating gates for diversity

Quantum-Inspired Particle Swarm Optimization Algorithm Encoded by Probability Amplitudes of Multi-Qubits

Xin Li¹, Huangfu Xu², Xuezhong Guan²

¹School of Computer and Information Technology, Northeast Petroleum University, Daqing, China
²School of Electrical and Information Engineering, Northeast Petroleum University, Daqing, China
Email: <u>lixin dq@163.com</u>

Fig. 1. The movements of particles in PSO and QPSO; (a) PSO (b) QPSO.

11

SURPASSING THE CLASSICAL LIMIT

MAKING AN ELECTRICAL CIRCUIT QUANTUM

ACCESSING THE QUANTUM WORLD

- Combination of *R*, *L*, *C* (linear or nonlinear)
- Excite with voltages / currents (AC or DC)
- Classically, these quantitates can take on any continuous values

QUANTUM MECHANICS SAYS THESE QUANTITIES CAN BE FUNADEMENTALLY DISCRETE!

Coherent control of macroscopic quantum states in a single-Cooper-pair box

Y. Nakamura*, Yu. A. Pashkin† & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305-8051, Japan † CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan

TW/ENTY YEARS OF COHERENCE

- NEC demonstrates coherent oscillations in 1999! (~ns coherence)
- 3D Transmon: Reduce sensitivity to charge noise, shunt with low loss capacitors, all microwave control and readout (~ ms coherence)
 → Al/AlOx/Al Josephson junctions can be highly coherent !

MINIMALIST QUBIT ENABLES MANY, WELL CONTROLLED EXPERIMENTS & ALLOWS US TO ENTER THE 10-100 QUBIT ERA

MANY OTHER, MORE FLEXIBLE DESIGNS TO EXPLORE: TUNABLE, TOPOLOGICAL CIRCUITS, NON S-WAVE MATERIALS, NOVEL TUNNEL BARRIERS

Observation of High Coherence in Josephson Junction Qubits Measured in a Three-Dimensional Circuit QED Architecture

A QUBIT IS JUST A NONLINEAR OSCILLATOR

- Quantum harmonic oscillator: only certain energies (currents) are allowed
- Tunnel junction → Nonlinear, isolate 0, 1

Resistance (fluctuations) causes decoherence R

Al/AlOx/Al Josephson tunnel junctions

OTHER WAYS TO RELAX QUANTUM SUPERPOSITION...

MEASURING QUBIT STATES: MICROWAVE REFLECTOMETRY

SCALING UP TO OUANTUM PROCESSORS

High-Coherence Materials
Signal Processing

ENGINEERING SINGLE QUANTA FOR QIS

Quantum Materials

- Assist / encourage nature to assemble complex structures
- Quantum coherence is preserved via structural perfection & symmetry
- Engineering applications harness emergent phenomena

Quantum Devices

- Complete design and synthesis of quantum matter!
- Quantum coherence sensitive to (needed)
 surfaces/interfaces & asymmetry
- Read / write access to individual quanta
- Can access active control

OUBITS AND THEIR MANY FACETS

Qubit	f _{qubit} (GHz)	Τ ₁ (μs)	Τ ₂ (μs)	Τ ₂ * (μs)
1	5.231	57	91	58
2	5.382	57	66	34
3	5.096	42	54	33
4	5.326	63	74	47
5	5.184	58	95	53
6	5.308	63	112	37
7	5.343	56	96	50
8	5.221	69	98	57
	Average	58	86	46

• Planar devices have many surfaces/interfaces that can host defects

 Rapid non-destructive hydro-metrology!

WAFER SCALE PRODUCTION OF SC DEVICES

RESONATORS IN SUPERCONDUCTING CIRCUITS

X-ray Depth Profile through Niobium

Planar Superconducting Resonators with Internal Quality Factors above One Million

A. Megrant,^{1,2} C. Neill,¹ R. Barends,¹ B. Chiaro,¹ Yu Chen,¹ L. Feigl,² J. Kelly,¹ Erik Lucero,¹ Matteo Mariantoni,^{1,3} P. J. J. O'Malley,¹ D. Sank,¹ A. Vainsencher,¹ J. Wenner,¹ T. C. White,¹ Y. Yin,¹ J. Zhao,¹ C. J. Palmstrøm,^{2,4} John M. Martinis,^{1,3} and A. N. Cleland^{1,3, a)}

Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

A. Bruno,¹ G. de Lange,¹ S. Asaad,¹ K. L. van der Enden,¹ N. K. Langford,¹ and L. DiCarlo¹ QuTech Advanced Research Center and Kavli Institute of Nanosicence, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

Arxiv:1201:3384 Q ~ 1.7M (6.1 GHz)

Arxiv:1504:04082 Q ~ 1.3M (4.57 GHz)

HIGH RESOLUTION EDS MAPPING TO SHOW THE AL/ALOX/AL/SI MATERIALS CONFIGURATION

COMPOSITION: TOP-AL, BOTTOM-AL, AND THE BARRIER

#2 Object 2	#1 Object 1	#5 Object 5	#4 Object 4	#3 Object 3	Top-Al Bottom-Al	Al 91.9 91 9	O 8.1 8.1	
HAADE A S			-	<u>30 nm</u>				

	Al	0	Cr	Si	Fe
#1	46.2	49.8	0.4	3.5	1
#2	46.3	49.9	0.4	3.3	1
#3					1
#4	65	35	1	1	1
#5	65.4	31.7	0	2.5	0.4

- Non-uniform tunnel barrier
- Thick oxide layer on top

JUNCTION UNIFORMITY IMPROVEMENTS

The most uniform areas of

this wafer show < 0.6% RSD

in frequency over a few cm²!

36 wafer systematic study to:

- Mitigate sources of I_c drift across ~ 50 cm²
- Improve yield

Automated probe station gathering statistics from 3,000 co-fabricated junctions

Key discoveries:

- Ashing (and its uniformity) has strong effect on I_c
- ~3% wafer-scale drift currently dominated by junction area variations
- Ultrasonicated development drastically improves yield for sub 100 nm junctions

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1-5 September 2019, Glasgow, UK.

UNPACKING QUANTUM INFORMATION

THE TYRANNY OF WIRES

- Need to reduce wire count !
- Need to reduce wire complexity
- Quantum data transmission & conversion
 - optical
 - acoustic
 - classical analog
 - classical digital
- Cryogenic data processing ?

R

IARPA

HIGH FIDELITY QUANTUM STATE READOUT

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1- 5 September 2019, Glasgow, UK.

PROTOTYPE CONTROLS FROM THE ACCELERATOR DIVISION

- Scalable
- Low cost per channel
- Optical interconnects
- On board signal processing
 - AD9736 14-Bit, 1200 MSPS Digitalanalog convertor (DAC)
 - 2 DAC on one low-pin count mezzanine card
 - Standard (LVDS) pin assignment for multiple potential carrier board

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1-5 September 2019, Glasgow, UK.

CAN WE TEACH A MACHINE QUANTUM MECHANICS ?

 $\vec{h}_{t+1} = \sigma(W.\vec{h}_t + \vec{W}_{ih}V_t + \vec{b})$ $P(y_t|\vec{b}) = \sigma(W_{ho}.\vec{h}_t + \vec{\beta})$

RNN RESULTS: RABI OSCILLATIONS

Recurent Neural Network

- Long-Short Term Memory •
- 64 Neurons per layer •
- 30,000 weight parameters •
- 0.8 ms of training per trace with a K80 GPU

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1- 5 September 2019, Glasgow, UK.

STARTING TO COMPUTE!

HYBRID ALGORITHMS & CHEMISTRY

PHYSICAL REVIEW X 8, 011021 (2018)

Featured in Physics

Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, and M. E. Kimchi-Schwartz[‡]

Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley, California 94720, USA; and Center for Quantum Coherent Science, University of California, Berkeley, California 94720, USA

J. R. McClean,[†] J. Carter, and W. A. de Jong Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

I. Siddiqi^{*}

Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley, California 94720, USA; Center for Quantum Coherent Science, University of California, Berkeley, California 94720, USA; and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Memory Requirements for Exact (Full Configuration Interaction)

System	Memory (PB)	Max Qubits
TACC Stampede	0.192	43
Titan	0.71	45
K Computer	1.4	46
APEX2020	4-10	48-49

M. Head-Gordon, M. Artacho, *Physics Today* 4 (2008)

VARIATIONAL QUANTUM EIGENSOLVER (VQE)

Variational Formulation:Minimize $\langle \Psi | H | \Psi \rangle$ Decompose as: $\mathcal{H} = h^i_{\alpha} \sigma^i_{\alpha} + h^{ij}_{\alpha\beta} \sigma^i_{\alpha} \sigma^j_{\beta} + h^{ijk}_{\alpha\beta\gamma} \sigma^i_{\alpha} \sigma^j_{\beta} \sigma^k_{\gamma} + ...$ By Linearity: $\langle \psi | \mathcal{H} | \psi \rangle \equiv \langle \mathcal{H} \rangle = \mathcal{H} = h^i_{\alpha} \langle \sigma^i_{\alpha} \rangle + h^{ij}_{\alpha\beta} \langle \sigma^i_{\alpha} \sigma^j_{\beta} \rangle + h^{ijk}_{\alpha\beta\gamma} \langle \sigma^i_{\alpha} \sigma^j_{\beta} \sigma^k_{\gamma} \rangle + ...$ Easy for a Quantum Computer:Easy for a Classical Computer:

$\langle \sigma^i_\alpha \sigma^j_\beta \sigma^k_\gamma ... \rangle$

Hybrid Scheme:

- Parameterize quantum state with classical experimental parameters
- Compute averages using quantum computer
- Update state using classical minimization algorithm (e.g. particle swarm)

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1- 5 September 2019, Glasgow, UK.

VOE ALGORITHM

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1-5 September 2019, Glasgow, UK.

H₂ REVISITED

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. Plenary presentation 4-EO-PL3 given at EUCAS, 1- 5 September 2019, Glasgow, UK.

SIMULATING THE COSMOS

Disentangling Scrambling and Decoherence via Quantum Teleportation

Beni Yoshida¹ and Norman Y. Yao^{2, 3}

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada ²Department of Physics, University of California Berkeley, Berkeley, California 94720, USA ³Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Dated: March 30, 2018)

QUTRITS VERSUS QUBITS

Increased computational power

<u>Contextuality</u> (minimal system: 1 qutrit) Single-qubit has a non-contextual ("classical") description (i.e. measurement independent)

'Magic of quantum computing' Certified RNG Howard *et al,* Nature (2016) Kulikov *et al* PRL (2017)

<u>Scrambling</u> (minimal system: 2 qutrits) Strongly interacting systems black holes are conjectured to be fastest scramblers

SCRAMBLING UNITARY: A CLOSER LOOK

Total time: 5.7 µs

PROCESS TOMOGRAPHY OF THE SCRAMBLER

 $P_{G} = \{Z, Z^{2}, X, XZ, XZ^{2}, X^{2}, X^{2}Z, X^{2}Z^{2}\}$

ADVANCED QUANTUM TESTBED

QUANTUM INFORMATION SYSTEMS

<u>Foundations</u>	<u>Algorithms</u>	<u>Materials</u>	<u>Science</u>	<u>Computation</u>	Engineering
 Tests of quantum theory Verification / Validation 	 Pure quantum Hybrid Quantum inspired 	CoherenceSensingNovel qubits	 Simulations / Emulations Many-body science Gravity 	 Gate based Ground state Q. walks QEC 	 Classical sim Signal proc. Control Transduction

SOME NEW FOUNDATIONAL QUESTIONS

How do we stabilize quantum coherence in an open many-body quantum system? What decoherence mechanisms emerge and what states are robust?

How can we efficiently sample the information in a many-body quantum system?

Can we conceive of machines to treat data fully quantum mechanically?

How do we parameterize, verify, and validate the information capacity of a complex quantum system in a "universal" way ?

What is the role of entanglement in different flavors of quantum computations?

How do we express quantum advantage? How fundamental are the classical resources needed to stabilize quantum mechanics at the many particle scale?