IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), November 2019. Plenary presentation 3-MO-PL2 given at EUCAS 2019, 01 - 05 September 2019, Glasgow (UK).

14th European Conference on Applied Superconductivity 1st-5th September 2019, SEC, Glasgow

Superconductors in High Magnetic Fields – Now and the future –

Satoshi Awaji

High Field Laboratory for Superconducting Materials (HFLSM), Institute for Materials Research, Tohoku University

Superconductors in High Magnetic Fields - Now and the future -

Contents

- 1. Status of practical superconductors
- 2. Nb_3Sn
- 3. Bi-Sr-Ca-Cu-O ($Bi_2Sr_2Ca_2Cu_3O_y$, $Bi_2Sr_2Ca_1Cu_2O_y$)
- 4. $REBa_2Cu_3O_y$
- 5. Fe-based Superconductor (IBS)
- 6. To develop high field superconducting magnet
- 7. Summary

3

Critical surface of practical SC

Key properties in High Field Superconductors

- Non-Cu \mathcal{J}_c in high magnetic field
 - Introduction of flux pinning center to increase layer \mathcal{J}_c
 - Increase volume fraction SC
- Stress/strain effect on J_c
 - Understand and control strain effects on \mathcal{J}_{c}
 - Reinforcement with high strength materials.

Non-Cu \mathcal{J}_c (non stabilizer \mathcal{J}_c)

Mechanical stress in the magnet

are important for high field magnets as well as in-field J_c .

- Strain limits of most superconductors are 0.3-0.5%.
- Reinforcement is necessary for high field magnet.

Practical Nb₃Sn wires

Flux pinning of Nb₃Sn - grain boundary -

Dominant flux pinning center in Nb_3Sn wires is grain boundary!

Figure 10. Maximum pinning force as function of reciprocal grain size, after Fischer [89]. (*Adapted with kind permission of C M Fischer*).

Godeke, SuST 19 (2006) R68

Improve flux pinning in Nb_3Sn wires

X. Xu et al., Appl. Phys. lett. **104**, 082602

Note ZrO₂ particles 10 nm OD

How do ZrO₂ particles refine Nb₃Sn grain size?

- > Impede Grains coarsening: distinct gradients in grain size.
- Be nucleation centers: newly-formed grains in the internal oxidation samples are smaller.

M. Sumption, FCC week 2016 slides

11

High strength Nb₃Sn

- From application view point, Stress is important.
- From material view point, Strain controls property.
- Steep SS curve reduces strain

Strain dependence of Nb₃Sn

- Thermal strain due to the composite
- \mathcal{J}_{c} peak at thermal strain
- Scaling of $\mathcal{J}_{c}(\varepsilon)$ curves by $\mathcal{B}_{c2}(\varepsilon)$

Effect of internal strains —pre-bending treatment—

Prebending (repeated bending) improves all superconducting parameters because of a change of residual strain state.

Angular dependence of internal strain ($CuNb/Nb_3Sn$)

Figure 6. Typical diffraction pattern of $Cu20\%Nb/(Nb, Ti)_3Sn$ wires measured by the TOF method at TAKUMI.

15

S. Awaji et al, SuST 23 (2010) 105010, SuST 26 (2013)073001.

Effect of prebending

- ✓ Improve J_c and mechanical property by pre-bending process due to the plastic deformation and work hardening of CuNb.
- \checkmark Improve \mathcal{J}_c^{\max} due to the change of 3D strain

Advanced technology of Nb₃Sn conductor for 25T-CSM

High strength (CuNb/Nb₃Sn)

Oguro et al., SuST. 26 (2013) 094002.

Rutherford cable

Sugimoto et al., IEEE TAS., 25 (2015) 6000605.

Pre-bending (0.5%)

17

(Strain management)

Oguro et al., SuST. 29 (2016) 084004.

LTS:0300mm-14T@854A

L1	L2	L3
150	185.9	229.2
540	628	628
	854	
13.8 (14.6)*	11.3	8.37
6.76	8.39	9.95
-38	-49	-48
251 (267)*	243	200
	L1 150 540 13.8 (14.6)* 6.76 -38 251 (267)*	L1 L2 150 185.9 540 628 854 854 13.8 (14.6)* 11.3 6.76 8.39 -38 -49 251 (267)* 243

*() w/o energizing the HTS insert

CuNb/Nb₃Sn Rutherford Cable for 25T-CSM

 ✓ The Nb₃Sn Rutherford cable optimized by reinforcement and strain control (prebending) is operated in high stress state below 251 MPa (267 MPa in stand-alone operation).

LTS coil for 25T-CSM

Critical Current, I_c (A)

Irreversible strain Cliff in RRP Nb₃Sn wires

N. Chegour et al, Sci. Rep. 9 (2019)9466.

Strain limit (irreversible strain) strongly depends on the HT temperature.

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), November 2019. Plenary presentation 3-MO-PL2 given at EUCAS 2019, 01 - 05 September 2019, Glasgow (UK).

BSCCO

 $1 \mu m$

- Both of Bi2212 and Bi2223 have strong c-acis orientation.
- In-plain alighment can be seen only in Bi2212.

Kametani et al., SR 5 (2015) 8285.

110

100

High strength Bi2223 tapes by SEI

- High strength due to the pre-strain (<0.35%) and reinforcement.
- Improvement of strength is expected with thicker reinforcement.

Mechanical Properties at low temps.

- Stress-strain curves become slightly steeper with temperature decreasing and close to the result of coil at 4K.
- Stress limit more than 400 MPa is not so different with temperature.

Magnet applications with Bi2223

Bi2223 (HT-CA)

Bi2223 (HT-Nx)

24.6T- 52mm(HFLSM)

 $\sigma_{max} \approx 323 \text{ MPa}$

Open for users since 2016 250 days/year operation 24.2T-53mm (NIMS) 1.02GHz-NMR

 $\sigma_{\text{max}} \approx 198~\text{MPa}$

NMR with 1.02 GHz

20.1T- 52mm(HFLSM)

 $\sigma_{max} \approx$ 118 MPa

Open for users since 2013 >250 days/year operation

25

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), November 2019. Plenary presentation 3-MO-PL2 given at EUCAS 2019, 01 - 05 September 2019, Glasgow (UK).

Commercial REBCO tapes

Ag cap layer Cu stabilization		RE	Method	t_SC (um)	APC	Template	Sub	t_sub (um)	Stabilizer	t_stab (um)
—	D utiliums	Gd		≈2	-			75	Cumberta d	10-40 × 2
/ Fujikura	rujikura	Eu	PLD	≈2.5	Нf	IBAD-MGO	Hastelloy	50	си ріатеа	
SuperPower	SuperPower	Y,Gd	CVD	≈1.5	Zr	IBAD-MgO	Hastelloy	(30), 50	Cu plated	20,40 x 2
SUNAN	SuNAM	Gd	RCE	1.3-1.8	-	IBAD-MgO	Hastelloy /SS	60	Cu plated	5-10 x 2
	SuperOx	Gd		2.3-2.5	-		Hastelloy	40, 60	Cu plated	1-50 x 2
SUPERCONDUCTIVITY FOR LIFE		RE	PLD	2.3-2.7	Нf	IBAD-MgO				
	SST	RE	PLD	≈2.4	Not Open	IBAD-MgO	Hastelloy	30,50	Cu plated	5-10 x 2
Bruker EST	Bruker	У	PLD	1.5-1.7	Nano Rod	ABAD-YSZ	55	100	Cu plated	40 x 2
American Superconductor [®]	AMSC	Y,Dy	MOD	0.8-1.2	Dy2O3	RABITS	NiW	≈100	Cu, Brass, SS laminated	50 x 2
THEVA	THEVA	Gd	PVD (EB)	≈2.5	-	ISD-MgO	Hastelloy	50, 100	Cu PVD / laminated	30, 40, 100 (lamination) <20 x 2 (PVC)
	STI	Y	RCE-CDR		-	IBAD-MgO	Hastelloy	100	Cu PVD	20 x 2
	SEI	Gd	PLD		-	Textured-Cu	55	100	Cu plated	20 x 2

Non-Cu \mathcal{J}_c of REBCO commercial tapes

- APC is effective even in low temperatures and high fields.
- Many venders introduce APC.
- Non-Cu $\mathcal{J}_{\rm c}$ increases with a reduction of substrate thickness and an increase of REBCO thickness.
- Increase REBCO thickness is effective to increase non-Cu $\mathcal{J}_{\rm c}$ but may increase cost and delamination risk.

Typical angular dependence of \mathcal{J}_c for REBCO tapes

Flux pinning phase diagram (High Temperature)

The correlated pinning strength in many NRs shrinking rapidly with increasing T toward to T_{dl} . The random and correlated pins competed in HT. The correlated pinning becomes dominant below T_{dl} and B_{ϕ} .

Flux pinning phase diagram

The correlated pinning strength in many NRs increases rapidly with Tdecreasing toward to T_{dl} . The random and correlated pins competed in HT. The correlated pinning becomes dominant below T_{dl} and B_{ϕ} .

Inclined nanorods

Flux pinning force density, F_p

nanoparticles

Fujita et al., IEEE TAS, 29 (2019) 8001505.

34

Comparison of F_p/F_p^{max} curves at 4.2K

B (1) *S. Miura et al., IEEE TAS 28 (2018) 8000606.

- \checkmark B_{max} becomes higher with stronger random pinning.
- Fluctuation of growth direction and segmentation of nanorod enhances random pinning behavior.
- Practical REBCO tapes are in the intermediate state between random and correlated pinning states.

HFLSM

Cooperative pinning model - correlated pinning -

Calculation results

 \checkmark Stronger random pinning contribution shifts $F_{\rm p}$ peak to higher field.

Electromechanical properties in REBCO

- ✓ Stress tolerances decreases with increasing Cu and decereasing Hastelloy.
- ✓ Hastelloy thickness tends to decrease for increase Je recently.

Strain dependence of \mathcal{J}_c in REBCO tapes

Strain dependence of T_c along a- and b- axes

1.02

0.98

0.96

0.94

0.92

0.9

-0.6 -0.4

S. Awaji et al., Sci. Rep. 5 (2015) 11156.

40

a/b

a/b

/// cr c0

1/1

REBCO <110> with Cu

0 A_a (%) 0.2 0.4 0.6

-0.2

Delamination in REBCO tapes

Delamination strength depends on the methods

Courtesy of S. Muto (Fujikura)

Weibull analysis considering size effect

- Delamination strength as a function of volume-> depending on thickness
- Is Local degradation unavoidable?
 - -> Need strategy for the local degradation in REBCO magnet.

Muto et al., IEEE TAS 28 (2018) 6601004.

Fe-based Superconductor (Ba, K)Fe₂As₂

43

High transport Jc values were achieved in Ba122/Ag tapes

At 4.2K, 10 T, I_c =437 A, J_c ~150000 A/cm²

H. Huang, et al., *SuST* 31 (2018) 015017

Y. Ma Plenary talk at EUCAS 2019

Sumary: J_c of different IBS coated conductors

- From the point of view of possible applications, many groups tried film deposition on technical substrates.
- ♦ Three main systems (11, 122, and 1111) with superior J_c have already been realized on technical substrates, e.g., most of J_c at ~10T are > 10⁵ A/cm², from 10⁵ to 10⁶ A/cm².

Task: to develop simpler and scalable techniques for making long coated conductors

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), November 2019. Plenary presentation 3-MO-PL2 given at EUCAS 2019, 01 - 05 September 2019, Glasgow (UK).

To develop high field superconducting magnet

High Field SC Magnet Developments - Practical Magnets -

High Field SC Magnet Developments - Practical Magnets +Demonstrations -

45.46T- 14mm(NHMFL) S. Hahn et al., Nature 570 (2019) 497.

Superconducting magnet beyond 40T can be targeted.

On going projects

- 40T-SM project (NHMFL)
- 1.3GHz (30.5T)NMR project (RIKEN)
- 30T-CSM (upgrade of 25T-CSM) (Tohoku U.)

48

															49
High Field HTS Magnets (All SC magnet)															
			l	ng	111	ieiu			viu	JIEI			luç	JIEI	J
HFLSN Sendai							S	5. Awaji, S	School T	extbook "Hi	gh Temperature Superco	nducto	ors (in	Japanese)	vol. 2", JSAP, 2019 in press
Name	Group	Purpose	B(T) (HTS/LTS)	HTS	J _{con} (A/mm²)	Max Stress (MPa)	ID (mm)	Т₀р (К)	Winding	Impregnation	Status	Year	Ref		
32T-SM	NHMFL	User magnet	32 (17/15)	RE123	193	378	40	4.2 (LHe)	DP	Dry	Open soon	2017	[1]	Insulated	Dreatical ura
25T-CSM	Tohoku U.	User magnet	24.6 (10.6/14)	Bi2223	150	323	96	4-8	DP	Epoxy/ turn separation	Open since 2016	2016	[2]	Insulated	Practical use
20T-CSM	Tohoku U.	User magnet	20,1 (4.45/15.6)	Bi2223	118	212	90	4-6	DP	Epoxy/ turn separation	Open since 2013	2013	[3]	Insulated	
1020MHz- NMR	NIMS /RIKEN	NMR	24.2 (3.62/20.4)	Bi2223	150	194	78	1.8 (LHe)	Layer	Wax	Obtained NMR signal, Closed in 2017	2016	[4]	Insulated	
Fly-wheel	Furukawa	300kW FW	3.4	RE123	130		120	30-50	DP	Dry	Operate since 2015 as FW (4ton)	2015	[5]	Insulated	
5T R&D	Fujikura	Demo	5	RE123	83	150	260	25	SP	Ероху	Use at Fujikura	2013	[6]	Insulated	
27T	IEE/CAS	Demo	27.2	RE123	389		36	4.2 (LHe)	NI-DP	Wax	NI	2019	[17]	NI	
24T R&D	NIMS /RIKEN	Demo	24 (6.8/17.2)	RE123	428	408	50	4.2 (LHe)	Layer	Wax		2012	[7]	Insulated	Demonstration
25T R&D NMR	U. Geneva	Demo	25 (4/21)	RE123	733	139	20	2.2	Layer	Ероху		2019	[8]		
3T-MRI	Mitsubishi	MRI	3	RE123	257		320	7	DP	Epoxy/ turn separation	Obtained MRI Image	2017	[9]	Insulated	
9.4T-CSM	Toshiba	Demo	13.5	RE123	375	255	50	10	SP	Ероху		2016	[10]	Insulated	
NOUGAT	LNCMI/CEA -Saclay	Demo	14.5	RE123	717	(454@30T)	50	4.2(LHe)	DP	Dry	32.5T under 18T by resistive magnet	2019	[11]	MI	
LBC	NHMFL	Demo	14.5	RE123	1420	691	14	4.2K(LHe)	SP	Dry	Damaged at 45.5T under 31T by resistive magnet	2017	[12]	NI	
28T Demo	RIKEN	Demo	27.7 (6.3/4.3/17.1)	RE123 /Bi2223	396/238		40	4.2 (LHe)	Layer	Wax	Quench and damaged at 27.7T	2016	[13]	Insulated	Damaged
30.5T	MIT	NMR	30.5 (18.8/11.7)	RE123	547		91	4.2 (LHe)	NI	Epoxy/ turn separation	NI, HTS coils damaged in test	2018	[14]	NI	
25T-CSM	Tohoku U.	User magnet	24 (10/14)	RE123	221	407	104	4-8	SP	Epoxy/ turn separation	Quench and damaged at 24T	2015	[2]	Insulated	
25T NI	SuNAM /MIT	Demo	26.4	RE123	404	286	35	4.2 (LHe)	NI-SP	Dry?	NI	2016	[15]	NI	
25T	IEE/CAS	Demo	25.7 (10.7/15)	RE123	100-306	382	36	4.2 (LHe)	NI-DP	Wax	NI, Quench at 25.7T	2017	[16]	NI	
3T-MRI	NIMS /SEI	MRI	3	Bi2223	114	137	514 (RT bore)	14	DP	Ероху	MRI image at 1.5T, damaged in test	2013	[18]	Insulated	

From a viewpoint of magnet application 1

- Nb₃Sn
 - Non-Cu \mathcal{J}_c is improving with the improvement of phase formation and an introduction of additional pinning centers
 - A mechanical strength is still improving.
- Bi2212
 - Unique round wire.
 - High in-field \mathcal{J}_c due to the in-plane alignment.
 - Improvement of mechanical properties is expected.
- Fe-based Superconductor
 - Low cost and small anisotropy
 - Good in-field \mathcal{J}_c in high filed
 - Performance is improving.

From a viewpoint of magnet application 2

- Bi2223
 - The mechanical strength is improving with the reinforcement and pre-compression. It is still improving.
 - Good homogeneity
- REBCO

- High performance of in-field Jc and mechanical properties.
- Jc increases with an introduction of APC.
- A thickness of Hastelloy is decreasing in order to increase non-Cu Jc.
- Local degradation due to the complex stress should be overcome.

-View point of REBCO coil-

1. Bundles

✓ Current share at the local
 degradation
 ✓ Reduce fraction of insulation

- 2. Improve the stiffness of pancake coil
- 3. Protection from thermal runaway
 - ✓ Dumping without thermal runaway (Passive protection).
 - ✓ Dumping as fast as possible with normal states (Active protection using Q-heater)
 - ✓ Non-insulation technique (Self protection)

As conclusion

- ✓ HTS wires have the ability to develop high field superconducting magnets beyond 20T.
- \checkmark Key properties of high field superconductors are ... in-field $\mathcal{J}_{\rm c}$ and electromechanical properties.

Generate a high magnetic field with toughness.

Develop 50T superconducting magnet!

Thank you for your kind attention!

Superconducting materials - Critical temperature T_c -

G. Bednorz, A. Müller, LSCO, 1986

W. Wu, C. Chu YBCO, 1987

H. Maeda, BSCCO, 1988

Nagamatsu, Akimitsu, MgB2, 2000

Kamihara, Hosono, LaOFeP, 2006

Practical Superconducting Wires

Brass/Ag/Bi₂Sr₂Ca₂Cu₃O_y (Bi2223) Ag/REBa₂Cu₃O_y/Hastelloy (RE123, RE:rare earth)

CONTRACTOR OF THE OWNER OWNE		Stabilization layer	Ag	5-50 µm
$4 \text{mm} \ge 0.2 - 0.3 \text{mm}$	n	Superconduc ting layer	REBCO	1-2 µm
		Buffer layer	PLD-CeO ₂	0.4 µm
		Buffer layer	IBAD-MgO /Gd ₂ Zr ₂ O ₇	0.7 µm
		Substrate	Hastelloy C276	25-100 μm
vertication of the state of th	GdBCO layer plating copper			

References

[1] W. D. Markiewicz, D. C. Larbalestier, H. W. Weijers, A. J. Voran, K. W. Pickard, W. R. Sheppard, J. Jaroszynski, A. Xu, R. P. Walsh, J. Lu, A. V. Gavrilin, and P. D. Noyes, IEEE Trans. Appl. Supercond., 22 (2012) 4300704.

[2] S. Awaji, K. Watanabe, H. Oguro, H. Miyazaki, S. Hanai, T. Tosaka, S. loka, Supercond. Sci. Technol. 30 (2017) 065001.

[3] S. Awaji, H. Oguro, K. Watanabe, S. Hanai, S. Ioka, H. Miyazaki, M. Daibo, Y. Iijima, T. Saito and M. Itoh, Adv. Cryo. Eng. 59 (2014) 732.

[4] G. Nishijima, TEION KOGAKU (J. Cryo. Super. Soc. Jpn.), 51 (2016) 329 (in Japanese).

[5] T. Yamashita, M. Ogata, H. Matsue, Y. Miyazaki, M. Sugino, K. Nagashima, RTRI REPORT, 31 (2017) 47 (in Japanese).

[6] M. Daibo, S. Fujita, M. Haraguchi, H. Hidaka, Y. Iijima, M. Itoh, T. Saito, TEION KOGAKU (J. Cryo. Super. Soc. Jpn.), 48 (2013) 226 (in Japanese).

[7] S. Matsumoto, T. Kiyoshi, A. Otsuka, M. Hamada, H. Maeda, Y. Yanagisawa, H. Nakagome, H. Suematsu, Supercond. Sci. Technol. 25 (2012) 025017.

[8] C. Barth, P. Komorowski, P. Vonlanthen, R. Herzog, R. Tediosi, M. Alessandrini, M. Bonura and C. Senatore, Supercond. Sci. Technol. 32 (2019) 075005.

[9] S. Yokoyama, H. Miura, T. Matsuda, T. Inoue, Y Morita, S. Otake, S. Sato, TEION KOGAKU (J. Cryo. Super. Soc. Jpn.), 52 (20137) 217 (in Japanese).
[10] H. Miyazaki, S. Iwai, T. Uto, Y. Otani, M. Takahashi, T. Tosaka, K. Tasaki, S. Nomura, T. Kurusu, H. Ueda, S. Noguchi, A. Ishiyama, S. Urayama, H. Fukuyama, IEEE Trans. Appl. Supercond., 27 (201) 4701705.

[11] Private communication, EUCAS2019 3-LO-HH-025, MT26 Fri-Mo-Or27-04.

[12] S. Hahn, K. Kim, K. Kim, X. Hu, T. Painter, I. Dixon, S. Kim1, K R. Bhattarai, S. Noguchi, J. Jaroszynski. D. C. Larbalestier1, Nature, 570 (2019)496.

[13] Y. Yanagisawa, K. Kajita, S. Iguchi, Y. Xu, M. Nawa, R. Piao, T. Takao, H. Nakagome, M. Hamada, T. Noguchi, G. Nishijima,

[14] Y. Iwasa, J. Bascuñán, S. Hahn, J. Voccio, Y. Kim, T. Lécrevisse, J. Song, K. Kajikawa, IEEE Trans. Appl. Supercond., 25 (2015) 4301205.

[15] S. Yoon, J. Kim, K. Cheon, H. Lee, S. Hahn, S. H. Moon, Supercond. Sci. Technol. 29 (2016) 04LT04.

[16] J. Liu, Q. Wang, Y. Dai, L. Wang, L. Qin, K. Chang, L. Li, B. Zhao, IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), July 2016

[17] Private communication, EUCAS2019

[18] Y. Terao, O. Ozaki, S. Kawashima, K. Saito, T. Hase, H. Kitaguchi, K. Sato, S. Urayama, H. Fukuyama., IEEE Trans. Appl.d Supercond. 24 (2014) 1.