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Future of Computing

• High Performance Computing. (HPC)
– Traditional model of computation

• Quantum Computing (QC)
– Can outperform HPC in some tasks

• Neuromorphic Computing (NC)
– “Neuroscience” inspired architecture
– Dedicated Hardware
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Structure of a Biological Neuron

https://www.khanacademy.
org/science/biology/human

-biology/neuron-nervous-
system/a/the-synapse

From:Wikipedia

DENDRITES
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Fast Introduction to Neural Networks

Artificial Neuron Network of Neurons
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Supervised Learning

Untrained
Neural Network

catnot
cat

Trained
Neural Network

Inference

New
Data

Training

✓ ✓

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), September 2019. 
Invited presentation 3-KN-1 given at ISEC, 28 July-1 August 2019, Riverside, CA, USA.

5



• Today, there is large demand to perform “neural network” 
operations
• Image Classification
• Speech Recognition
• Natural Language Processing: “translation”

• Dedicated Neuromorphic Hardware

• Other Technology platforms Neuromorphic have attracted venture interest

Machine learning hardware

Bill Gates

TrueNorth, IBM

see Merolla et al.,
Science, 2011.
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2nd and 3rd Generation Neural Networks

2nd Generation: “Proven”

• Limited Biological “inspiration”

• Matrix-vector multiplication

• Seeking weight matrix

• Trained by supervisory system

• Limited History

• Task specific

3rd Generation: “Less Proven”

• More Biologically inspired

• Information in dynamical state

• Spiking neurons communicate in rate and timing

• Potential for learning without supervision

• Information integrated across space and time

• General cognitive systems
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Question:  Why do we need Generation 3?
Answer:  Energy Efficiency and Size

https://arxiv.org/abs/1906.02243v1
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Energy and Policy Considerations for Deep Learning in NLP
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Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al., 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption CO2e (lbs)

Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO2 emissions from training com-
mon NLP models, compared to familiar consumption.1

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.

Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO2 emissions listed in Table 1,

1Sources: (1) Air travel and per-capita consump-
tion: https://bit.ly/2Hw0xWc; (2) car lifetime:
https://bit.ly/2Qbr0w1.

• “How do you make the largest scale 
artificial neural network?”
– Human Brain:  

• 100 billion neurons
• 1 neuron fans out to 10,000 neurons

• What are the fundamental limits?
• How do you evaluate the performance?
• How do physical characteristics of the 

devices relate to the performance of 
the neuromorphic computer?
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• Biologically Inspired
• Spiking Signals, Energy Efficient
• Rate and Time encoding

• Differentiated local processing
• Information integration across:
• Space (network structure)
• Time (dynamics)
• Experience (plasticity)

Can we get to a size scale for “Cognitive” Systems?

Spiking Neural Networks / Dedicated Hardware
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Fluxonic processing of 
photonic synapse events

Spiking neural networks
jeffrey.shainline@nist.gov
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Fluxonic processing of 
photonic synapse events

Light for communication
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Fluxonic processing of 
photonic synapse events

Superconducting electronics 
for single-photon detection
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Fluxonic processing of 
photonic synapse events

Superconducting electronics 
for neural computation
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Fluxonic processing of 
photonic synapse events

Neuromorphic supercomputing
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Device requirements for massive connectivity

Dense local fanout
Long-range connectivity

Principal conjecture:
Use light for communication

Photons don’t have charge or mass

We seek very large systems
Energy efficiency is paramount

Use single-photons for communication
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Neurons that signal with single photons
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Neurons that signal with single photons

How do they work?
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Superconducting loop
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Photons add current
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Current gets integrated
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Current threshold
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Photons produced
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Synapse transduces
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Photons update weight
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Inhibitory synapses
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Many synapses
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Transmitter circuits
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Colors for different operations
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Loop neuron Shainline et al., arXiv:1805.01929 (2018).
Shaineline, arXiv:1904.02807 (2019)
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Photon-to-fluxon transducer

these are fluxons
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The synapse
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Long-range = photons
Short-range = electronics / SFQ

Josephson junction simulation of neurons

Patrick Crotty,1 Dan Schult,2 and Ken Segall1
1Physics & Astronomy Department, Colgate University, Hamilton, New York 13346, USA

2Mathematics Department, Colgate University, Hamilton, New York 13346, USA
!Received 22 February 2010; revised manuscript received 25 May 2010; published 19 July 2010"

With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present
superconducting circuits containing Josephson junctions that model biologically realistic neurons. These “Jo-
sephson junction neurons” reproduce many characteristic behaviors of biological neurons such as action po-
tentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical
and chemical synapses. Using existing fabrication technologies, large interconnected networks of Josephson
junction neurons would operate fully in parallel. They would be orders of magnitude faster than both traditional
computer simulations and biological neural networks. Josephson junction neurons provide a new tool for
exploring long-term large-scale dynamics for networks of neurons.

DOI: 10.1103/PhysRevE.82.011914 PACS number!s": 87.19.ll, 87.19.lm, 87.19.lj

How do large networks of neurons organize, communi-
cate, and collaborate to create the intrinsic behaviors and
dynamics of the brain? Over the past century, individual neu-
rons have been studied at the cellular, compartmental and
molecular level. Synaptic models, while still somewhat rudi-
mentary, accurately reflect many basic features of synapses
and how they modify signals between neurons. Today, it is
becoming feasible to explore networks of neurons behaving
as units, how they synchronize, provide top-down or
bottom-up feedback, and encode sensory information. This
exploration is an important step toward understanding the
brain, which will require multiscale analysis with models of
collective behavior at many different levels simultaneously.

As part of this effort it is important that we understand
how networks of neurons behave on the scale of thousands to
tens of thousands of neurons, the size of a typical neocortical
column. Large-scale digital simulation projects such as the
Blue Brain #1,2$ and PetaVision #3$ projects have demon-
strated that the limitations of inherently serial computer pro-
cessors can be improved by effective parallel computing de-
signs. But simulation time remains a significant hurdle to
including biologically realistic features in large-scale simu-
lations. Analog simulations using very-large-scale-integrated
!VLSI" circuitry to mimic neurons and synapses are improv-
ing in realism and speed, but they are still limited by com-
plexity and power consumption. We propose an alternate di-
rection for analog simulation of large-scale networks of
biologically realistic neurons. Using superconducting Jo-
sephson junctions to model neurons connected with real-time
synaptic circuitry, we can explore neural network dynamics
orders of magnitude faster than current digital or analog
techniques allow. Using these circuits, we hope to learn
about neural interactions such as synchronization, long term
dynamics and bifurcations, feature identification, and infor-
mation processing. The long term goal is to understand group
behavior of neurons sufficiently to use them as building
blocks for studying larger scale neural networks and brain
behavior.

Our basic circuit unit !the JJ Neuron" involves two Jo-
sephson junctions connected in a loop as shown on the left
side of Fig. 1. The individual junctions behave phenomeno-
logically like ion channels: one corresponds to a depolarizing

current !such as Na+", and the other to a hyperpolarizing
current !such as K+". Enhancements are possible, of course,
and the inclusion of a third junction could allow for behav-
iors such as bursting that generally require at least three cur-
rents. The circuit displays many features of biologically re-
alistic neurons such as the evocation of action potentials
!firing" in response to input currents or pulses, input strength
thresholds below which no action potential is evoked, and
refractory periods after firing during which it is difficult to
initiate another action potential #4,5$.

The JJ Neuron is a variation of well developed rapid
single flux quantum !RSFQ" #6–8$ circuitry and is thus
straightforward to fabricate. RSFQ circuits using 20 000
junctions have been fabricated #9$, so we estimate that a
single chip could model as many as N=10 000 neurons,
about the number of neurons in a cortical column. For larger
brain regions, chips could be connected together. A simulated
action potential takes about 50 ps, and all neurons act in
parallel. Table I shows a comparison of the speed of a JJ
neuron with that of biological neurons and digital simula-
tions using established models. The figure of merit displayed
is the number of action potentials per neuron per second.
Speed depends on the arithmetic complexity of the model
employed, the number N of neurons simulated and their con-
nectivity. We show speeds for sparse !no connections be-
tween neurons" and dense !all neurons connected to all oth-

FIG. 1. Circuit diagram for the JJ Neuron !left loop" connected
to a model chemical synapse !right loop". In general, many syn-
apses could connect to a single JJ Neuron. Orientation of junction
phases is chosen for clockwise current in the left loop.
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A Power Efficient Artificial Neuron 
Using Superconducting Nanowires

Emily Toomey, Ken Segall, Karl Berggren

Pulsed neural networks consisting of single-
flux-quantum spiking neurons 
T. Hirose, T. Asai, and Y. Amemiya
Physica C, 463:1072, 2007. 
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SOEN technical approach
superconducting optoelectronic networks

1. Single photons for minimum spike energy 
(superconducting single-photon detectors )

2. Cold optoelectronics for monolithic integration
(all-silicon light-emitting diodes)

3. Cold electronics (SFQ) for nonlinear processing
(Josephson junctions, cryotron switches)

4. Light for interconnects
(silicon photonics)

36

1.

2.

3.

4.

J. M. Shainline, S. M. Buckley, R. P. Mirin, and S. W. Nam, “Superconducting 
optoelectronic circuits for neuromorphic computing,” Phys. Rev. Applied, Mar 2017.
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cryogenic silicon photonics platform: recent 
results
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All-silicon light emitting diodes

• Si defect centers have optical 
transitions

• Low temp. inhibits non-radiative 
pathways

• Electrical pumping with PN 
junction

• W-centers: 1220nm emission

39S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated...” APL, 2017.

and an 80 nm nitride spacer layer was deposited for electrical
isolation of the nanowire detectors from the LEDs. A 3.5 nm
WSi layer (for the SNSPDs) was then sputtered followed by
a 2 nm amorphous Si protective layer.21 SNSPDs were pat-
terned with a width of 300 nm and a length of 100 lm.20

Reactive ion etching was performed using Ar and SF6. Ridge
waveguides were then etched through the SiNx spacer and
the 80 nm spacer layer into the Si using CF4 chemistry. A
deep etch of the Si around the structures was then performed
for optical and electrical isolation. Au pads with a Ti adhe-
sion layer were patterned for electrical contacts to both the
SNSPDs and LEDs. An oxide overcladding was deposited,
and vias were etched to make contact to the pads.

Finally, the W centers were annealed for 30 min at
250 !C.14 All lithography was performed with a 365 nm i-line
stepper.20 An overview of the process layers is shown in Fig.
1(b). The wafer included die with four different patterns: an
electrical and photoluminescence test pattern, waveguide-
integrated LEDs to tapers for electroluminescence (EL) spec-
troscopy, waveguide-integrated LEDs to SNSPDs, and LEDs
to arrays of SNSPDs for a demonstration of scalability.

Figure 2(a) shows a diagram of an LED with the rele-
vant dimensions indicated. LEDs with lengths from 0.8 lm
to 100 lm were fabricated. The current-voltage characteris-
tics of the LEDs were first tested using a sorption pump cryo-
stat at 800 mK. The turn-on voltage was determined to be
1 V. Figure 2(b) shows a typical I-V curve for an LED with a
length of 10 lm, which was also the standard length chosen
for the LEDs in the scalability experiments. The turn-on
voltage (the voltage was measured for each device with the
current at 1 nA) varied with the length of the device (increas-
ing for shorter devices due to increased differential resis-
tance). The reverse-bias leakage current was <100 pA in all
measurements.

The spectral properties of the LEDs were then investi-
gated using a liquid-nitrogen-cooled linear InGaAs photo-
diode array and a spectrometer. The LED is coupled to a
1 mm-long waveguide that ends in a taper intended to scatter
light. The devices were cooled in a closed cycle He cryostat
at 4.2 K. The LEDs were electrically injected with a DC cur-
rent, and EL was collected with a 0.6 NA objective lens. The
resulting spectrum is shown in Fig. 3(a). Light was collected
from above the LED and subsequently from the taper at
the end of the waveguide with six times higher intensity
observed above the LED. A higher resolution spectrum of

the zero phonon line is shown in Fig. 3(b), with different
bias currents normalized to have the same maximum inten-
sity. The linewidth is 0.5 nm at 0.3 mA, broadening to 1 nm
at 1.3 mA. The spectrum shifts by 0.4 nm in this range of
bias currents (see supplementary material). While the multi-
mode nature of the structure makes it difficult to make a
quantitative estimate of the light emission, these measure-
ments verify spectrally that the emission is from the W cen-
ter and that there is light coupled to the waveguide.

The LED-to-nanowire devices were next tested in a sorp-
tion pump cryostat at 800 mK. An optical microscopy image
of these devices is shown in Fig. 4(a). In Fig. 4(b), the
SNSPD bias current is fixed at 5 lA, while the LED current
bias is increased. We observe an increase in counts on the
SNSPD above the background noise level when the LED bias
current reaches 150 pA. In Fig. 4(c), we show the SNSPD
response as a function of current through the nanowire for
seven values of LED bias current. For each LED current,
there is an initial increase in counts per second as the SNSPD
bias current is increased, and the response levels off at higher
bias current as the internal quantum efficiency of the SNSPD
saturates.19 To verify that the light is waveguide-coupled, the
crosstalk between two adjacent devices is examined, as

FIG. 2. (a) Schematic of an LED with the relevant dimensions indicated. (b)
IV curve for an LED of length 10 lm. Inset: zoom in to the voltage range
near threshold on a log y scale.

FIG. 3. (a) EL spectrum measured above the LED (red) and above the taper
(blue). (b) Higher resolution showing the linewidth of the zero phonon line
of the W center for different bias currents.

FIG. 4. (a) Optical microscopy image showing two LED to SNSPD (nw)
structures. (b) Counts per second versus LED current for SNSPD bias cur-
rent of 5 lA for one of the structures shown in part (a). (c) SNSPD counts
per second versus nanowire bias current at different LED currents for one of
the structures shown in part (a). LED currents of 100 pA, 150 pA, 320 pA,
1 nA, 4 nA, 28 nA, and 250 nA are shown. (d) SNSPD counts per second ver-
sus bias current for the two different LEDs and SNSPDs indicated in part
(a), indicating that the emitted light is waveguide coupled.

141101-2 Buckley et al. Appl. Phys. Lett. 111, 141101 (2017)
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Co-integration: Silicon LEDs + SNSPDs

40
S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated...” APL, 2017.
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All-silicon light emitting diodes

• LED turn-on voltage is ~ 1 V

• SNSPD can output ~ 1 mV

41S. M. Buckley et al. “All-silicon light-emitting diodes waveguide-integrated...” APL, 2017.

and an 80 nm nitride spacer layer was deposited for electrical
isolation of the nanowire detectors from the LEDs. A 3.5 nm
WSi layer (for the SNSPDs) was then sputtered followed by
a 2 nm amorphous Si protective layer.21 SNSPDs were pat-
terned with a width of 300 nm and a length of 100 lm.20

Reactive ion etching was performed using Ar and SF6. Ridge
waveguides were then etched through the SiNx spacer and
the 80 nm spacer layer into the Si using CF4 chemistry. A
deep etch of the Si around the structures was then performed
for optical and electrical isolation. Au pads with a Ti adhe-
sion layer were patterned for electrical contacts to both the
SNSPDs and LEDs. An oxide overcladding was deposited,
and vias were etched to make contact to the pads.

Finally, the W centers were annealed for 30 min at
250 !C.14 All lithography was performed with a 365 nm i-line
stepper.20 An overview of the process layers is shown in Fig.
1(b). The wafer included die with four different patterns: an
electrical and photoluminescence test pattern, waveguide-
integrated LEDs to tapers for electroluminescence (EL) spec-
troscopy, waveguide-integrated LEDs to SNSPDs, and LEDs
to arrays of SNSPDs for a demonstration of scalability.

Figure 2(a) shows a diagram of an LED with the rele-
vant dimensions indicated. LEDs with lengths from 0.8 lm
to 100 lm were fabricated. The current-voltage characteris-
tics of the LEDs were first tested using a sorption pump cryo-
stat at 800 mK. The turn-on voltage was determined to be
1 V. Figure 2(b) shows a typical I-V curve for an LED with a
length of 10 lm, which was also the standard length chosen
for the LEDs in the scalability experiments. The turn-on
voltage (the voltage was measured for each device with the
current at 1 nA) varied with the length of the device (increas-
ing for shorter devices due to increased differential resis-
tance). The reverse-bias leakage current was <100 pA in all
measurements.

The spectral properties of the LEDs were then investi-
gated using a liquid-nitrogen-cooled linear InGaAs photo-
diode array and a spectrometer. The LED is coupled to a
1 mm-long waveguide that ends in a taper intended to scatter
light. The devices were cooled in a closed cycle He cryostat
at 4.2 K. The LEDs were electrically injected with a DC cur-
rent, and EL was collected with a 0.6 NA objective lens. The
resulting spectrum is shown in Fig. 3(a). Light was collected
from above the LED and subsequently from the taper at
the end of the waveguide with six times higher intensity
observed above the LED. A higher resolution spectrum of

the zero phonon line is shown in Fig. 3(b), with different
bias currents normalized to have the same maximum inten-
sity. The linewidth is 0.5 nm at 0.3 mA, broadening to 1 nm
at 1.3 mA. The spectrum shifts by 0.4 nm in this range of
bias currents (see supplementary material). While the multi-
mode nature of the structure makes it difficult to make a
quantitative estimate of the light emission, these measure-
ments verify spectrally that the emission is from the W cen-
ter and that there is light coupled to the waveguide.

The LED-to-nanowire devices were next tested in a sorp-
tion pump cryostat at 800 mK. An optical microscopy image
of these devices is shown in Fig. 4(a). In Fig. 4(b), the
SNSPD bias current is fixed at 5 lA, while the LED current
bias is increased. We observe an increase in counts on the
SNSPD above the background noise level when the LED bias
current reaches 150 pA. In Fig. 4(c), we show the SNSPD
response as a function of current through the nanowire for
seven values of LED bias current. For each LED current,
there is an initial increase in counts per second as the SNSPD
bias current is increased, and the response levels off at higher
bias current as the internal quantum efficiency of the SNSPD
saturates.19 To verify that the light is waveguide-coupled, the
crosstalk between two adjacent devices is examined, as

FIG. 2. (a) Schematic of an LED with the relevant dimensions indicated. (b)
IV curve for an LED of length 10 lm. Inset: zoom in to the voltage range
near threshold on a log y scale.

FIG. 3. (a) EL spectrum measured above the LED (red) and above the taper
(blue). (b) Higher resolution showing the linewidth of the zero phonon line
of the W center for different bias currents.

FIG. 4. (a) Optical microscopy image showing two LED to SNSPD (nw)
structures. (b) Counts per second versus LED current for SNSPD bias cur-
rent of 5 lA for one of the structures shown in part (a). (c) SNSPD counts
per second versus nanowire bias current at different LED currents for one of
the structures shown in part (a). LED currents of 100 pA, 150 pA, 320 pA,
1 nA, 4 nA, 28 nA, and 250 nA are shown. (d) SNSPD counts per second ver-
sus bias current for the two different LEDs and SNSPDs indicated in part
(a), indicating that the emitted light is waveguide coupled.

141101-2 Buckley et al. Appl. Phys. Lett. 111, 141101 (2017)
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come with a handful of downsides, including large static-power consumption [12], large area, varying
input impedances[13], latching[14], and poor output-input feedback.

The most successful previous attempts at creating a superconductor-to-semiconductor interface
consisted of a superconducting preamplifier stage (e.g. a Suzuki stack) combined with a semicon-
ductor amplifier stage (e.g. HEMTs)[12][15][16]. This approach was very e↵ective in translating
signal levels, but was power-constrained. In particular, using semiconductor transistors in an am-
plifier configuration necessarily drew significant static power (⇠1 mW each), which strongly limited
scalability on a cryogenic stage. In related work, a CMOS-latch input was used after the pream-
plifier to static power[17], but introduced the need for per-channel threshold calibration. In an
alternate approach, it was shown that a >1 V output could be created from a nanowire device such
as the nTron[11], but using the nTron as a means for semiconductor-logic interfacing has proved
to have a few issues: (1) creation of the high-impedance state was a hotspot-growth process that
takes a nontrivial amount of time, (2) it was hysteretic and not able to self-reset without external
circuitry, and (3) output-input feedback was a concern, as the input and output terminals were
galvanically connected.

a

2 �m
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Figure 1: High-impedance superconducting switch overview. (a) Scanning electron micrograph
of one device (inset) closeup of the nanowire meander. (b) Schematic illustration of the device,
showing the three primary layers (resistor, dielectric, and nanowire) as well as contact pad geometry.
(c) Resistance data versus input power for several devices and circuit schematic for resistance
measurement. Maximum resistance is proportional to device area, with devices 1-4 having areas
44, 68, 92, and 116 µm2. (d) I-V curve of one device for three di↵erent input powers.

The device we present here is a monolithic switching element that combines a low-impedance
resistor input (1-50 ⌦) with a high-impedance (>1 M⌦) superconducting nanowire-meander switch
output. The input element and switching element are isolated galvanically but coupled thermally

2

• millivolt input -> Volt output
• No Josephson Junctions needed
• Reset about 10ns

Nano-cryotron thermal switch

42
A. McCaughan et al. “A compact, ultrahigh impedance superconducting thermal switch for 
interfacing superconductors with semiconductors and optoelectronics,” arXiv:1903.10461, 2019.
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Superconductor-to-semiconductor interface

43
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A. McCaughan et al. “A compact, ultrahigh impedance superconducting thermal switch for 
interfacing superconductors with semiconductors and optoelectronics,” arXiv:1903.10461, 2019.
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First steps toward photonic networks
Three planes of  amorphous silicon 
waveguides

Chiles et al., APL Photonics 2, 116101 (2017)
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Inter-planar couplers

• 0.05 dB  loss

• 36 µm length
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Chiles et al, APL 
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(2017).
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10 x 100 routing couplers

Chiles et al, APL Photonics 3 106101 (2018).
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10 x 100 routing couplers
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10 x 100 routing couplers
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Full Superconducting Optoelectronic Neuron

49

Optical OpticalFluxonic

SNSPDs Silicon LED
Josephson

Junction circuits

Electronic Electronic

Superconducting
Switch

J. M. Shainline, “Fluxonic processing of photonic synapse events,” arXiv:1904.02807, 2019.
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Eventual transfer to 300 mm foundry
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• Fabricated at SUNY Poly by 
Pops Papa Rao and team

• Measured at NIST by our team

Light sources on 300-mm wafers

Photoluminescence of 
W centers in Si at 4 K
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Wafer-scale 
modules
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Free-space interconnects for 3D
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Free-space 
inter-wafer 

interconnects
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Multi-wafer 
modules
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Brain-scale 
systems?

> 100 Billion 
neurons
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What can we do in five years?

Artificial visual cortex
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• Dense local fan-out with photonics
• Long-range communication at light speed
• Computing and memory with 

superconducting electronics

Superconducting 
optoelectronic 
networks

Would this reach the limits of cognition?
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