

Accelerator Technology: Now and the Future

Amalia Ballarino CERN, Geneva

14th European Conference on Applied Superconductivity 1st-5th September 2019, Glasgow

Accelerator technology

- Particle accelerators have been at the forefront of scientific discoveries for more than half a century
- Technology progress has been innovative and impressive
- Charged particles are accelerated to high-momenta to:
 - Probe matter at shorter distances (MeV: nucleus scale, TeV: sub-nuclear scale) Higher energy → Shorter wavelength
 - Generate new particles
- Continuous increase in energy and intensity to study known and unknown particles and their interactions

Particle accelerators

Rutherford, 1911: discovery of nuclear disintegration by α rays

Rutherford, 1927: in his presidential address to the Royal Society of England, made a strong **request for higher energy nuclear probes**:

" It has long been my ambition to have available for study a copious supply of atoms and electrons which have an individual energy far transcending that of the α and β particles from radioactive bodies. I am hopeful that I may yet have my wish fulfilled"

Rutherford challenged the physics community to invent higher-energy particle accelerators

The quest for higher energies

Standard Model Particles and forces

Historical trend: Hadron Colliders for discovery physics Lepton Colliders for precision physics

The present: operation of LHC

The LHC Findings

• Last particle predicted by Standard Model, the Higgs boson, discovered at CERN – July 2012 CMS Preliminary vs = 7 TeV, L = 5.05 fb⁻¹; vs = 8 TeV, L = 5.26 fb⁻¹ 12

A. Ballarino

Data

LHC Operation

LHC Operation

- Demonstrated reliable operation with 6.5 TeV proton beams
- ➢ Very good control and reproducibility of the beams → excellent performance of magnets, RF system, collimation system, alignment
- Robust machine configuration
- Efficient operation

~ 75 % Machine availability

Machine beautifully designed and built

LHC Superconducting Technology

- ~ 8000 Nb-Ti magnets
- > 1000 SC Circuits
- \sim 1200 tons of Nb-Ti
- ~ 36000 tons of magnets' cold masses
 1.9 K He II operation, ~ 120 tons of He

16 RF Nb/Cu 400 MHz, 5 MV/m, 4.5 K

HTS (Bi-2223 @ 50 K) Current Leads transferring ~ 3 MA of current

The LHC Roadmap

The LS2 activity in the LHC tunnel

The LS2 activity in the LHC tunnel

Consolidation of the dipole diodes insulation

1232 Diode Boxes180 People involved1/3 of the work accomplished

Preparing for 14 TeV operation

A. Ballarino

The near future: High-Luminosity LHC From 2026 onwards

The HL-LHC Upgrade

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of $L_{peak} = 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of $L_{int} = 3000 \text{ fb}^{-1}$ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.

Ultimate performance established 2015-2016: with same hardware

At present we only have about 190/3000 ~ 6.5 % of data yield after HL-LHC

LHC should not be the limit, would Experimentation and for this goal.

We need to be compatible with it!

L. Rossi, HL-LHC Project Leader

The HL-LHC Schedule

LHC / HL-LHC Plan

The HL-LHC SC Technologies

The HL-LHC Magnets

HL-LHC 11 T Nb₃Sn Dipoles

11 T cryo-assembly replacing a 15.6 m 8.3 T LHC dipole in 2020

4 + 2 Nb₃Sn Dipoles (5.5 m long) LHC IP7 – both sides

Installation in the LHC Tunnel by mid 2020

The 11 T Nb₃Sn Dipoles Production at CERN

HL-LHC Focusing Quadrupoles

Low-β Nb₃Sn Quadrupoles for HL-LHC Triplets

Large aperture: **150 mm** (70 mm in LHC) **Bpeak: 11.4 T** (8.6 T in LHC) Nb₃Sn (Nb-Ti in LHC)

Number of magnets: +2 (7.2 m long) 8 (4.2m long)**16 + 4**

CERN

Bladder and keys technology (USA-LARP development)

G. Ambrosio and P. Ferracin

Installation in the LHC Tunnel in 2024

Construction of the 1st and 2nd long (7.5 m) IT Quad Proto at CERN Winding 4th long magnet in USA (2×4.2 m)

Canted-Cosine Theta Nb-Ti Magnet

HL-LHC Orbit Corrector Dipole, 2.6 T 2.2 m long, 105 mm aperture

Series: 8+4 Magnets

HL-LHC Crab Cavities

16 SC RF Crab Cavities to be installed at LHC IP1 (ATLAS) and IP5 (CMS)

Civil Engineering for HL-LHC

HL-LHC MgB₂ Superconducting Links

8 + 2 SC Links Unit lengths ~ 100 - 140 m DC Current up to ~ 100 kA

Powering the HL-LHC magnets via MgB₂ SC Lines

MgB₂ cables for Superconducting Link

MgB₂ Columbus wire

 $MgB_{2} Wire (\Phi = 1 mm)$ 37 MgB₂ Filaments

 $\sim 1000 \text{ km MgB}_2$

 Φ ~ 90 mm ~ 129 kA at 25 K Forced flow of GHe

Cabling in industry a reacted MgB₂ wire

 MgB_2 cables assembly

HL-LHC MgB₂ Superconducting Link

A. Ballarino

Future accelerators

The LHC Findings

- Last particle predicted by Standard Model, the Higgs boson, discovered at CERN – July 2012
- Standard model complete
- No significant deviations from Standard Model observed

Standard Model Particles and forces

Standard Model: self-consistent field theory up to the quantum gravity scale - 10¹⁹ GeV ?

Limitations of Standard Model

Experimental observations

Neutrino masses and oscillations

The three neutrinos oscillate and therefore have masses. The Standard Model predicts that neutrinos have no masses

Matter/Antimatter asymmetry

Where is antimatter ?

The SM does not explain the unbalance between matter and antimatter in our universe

Dark matter

About 27 % of universe, but it is not included in Standard Model. Evidence: rotation curves of galaxies, supernovae observations,...

Dark energy

Theoretical observations

The Standard Model does not include gravity

31

Importance of technology development

- Fundamental research beyond the frontiers of knowledge brings to unpredicted discoveries
- New colliders under study cannot promise discovery of a new particle. They address specific questions
- Development of advanced experimental capabilities is fundamental for enabling future discoveries – and continued of future generations of scientists

Importance of technology development

Galileo Galilei: father of Modern Astronomy

January 1610: discovery of moons orbiting the planet of Jupiter

Evidence for the Copernican understanding of the universe

The Jupiter's moons

Superconducting technologies

• SC Cavities for acceleration

Give energy to a charged particle beam

Low Rs \rightarrow Qo $\geq 10^{10}$ (wrt to $\sim 10^4$ for Cu cavities) Smaller power consumption Long pulse acceleration fields Large beam aperture B < Bc \rightarrow Emax ~ 45 MV/m (for Nb)

- SC Magnets for hadron colliders Steer and focus a charged particle beam
- Other equipment, e.g. powering equipment

34

Physics beyond the Standard Model

- **Higgs factories** that operate over a wide range of beam energies for:
 - Precision measurements of Higgs and other particles that carry the imprint of Higgs, e.g. W (80.4 GeV) and Z (91.2 GeV) bosons and top quark (173.3 GeV);
 - Operation at high (up to 100 TeV) energies

Higgs portal to new physics

Future High Energy Colliders - Studies Hadron (p-p) vs lepton (e⁺-e⁻) collisions

p-p collisions

pp compound objects

e⁺-e⁻ collisions

e⁺ e⁻ point like particles
Future High Energy Colliders - Studies

- Lepton colliders: great for precision studies. Last operational: LEP, almost 20 years ago. They can be also discovery machines
 Linear or Circular:
 - Linear Lepton Colliders: higher energies (for a sufficient linear length)
 - Circular Lepton Colliders: limited by energy losses due to synchrotron radiation ($\Delta E \propto \frac{E^4}{m^4 R}$). But greater collision rates (large luminosity). They can be re-used as next generation of high-energy hadron colliders (as LEP Z₀ factory at 90 GeV and W⁺W⁻ factory at 160 GeV and then LHC)
- Hadron (proton) Colliders: energy reach via circular machine. Highest center of mass energy. Large discovery range

Future High Energy Colliders - Studies

Future accelerators: linear e⁺e⁻ colliders

A. Ballarino

International Linear Collider (ILC)

A. Ballarino

ILC: international facility in Japan

Site in Kitakami region, in northern Japan – close to Sendai and Morioka

Geological conditions for a tunnel up to 50 km long

ILC: Superconducting RF Technology

• Superconducting RF Nb cavities

Standing wave cavities – TESLA Technology

- ~ **16000** Cavities (500 GeV) Each cavity has **9 Cells** (1.25 m long)
- 1855 Cryo-modules (each 12 m long, 9 or 8 cavities)

Production yield ~ 90 % \rightarrow **Needed industrialization**

- Operating temperature ~ 2 K (superfluid helium). Six cryoplants
- Average field gradient: **31.5 MV/m \pm 20 %**
- RF frequency = **1.3 GHz**
- $Q_0 \ge 10^{10}$

State-of-the-art technology considered mature for building ILC

Recent progress in SC RF Technology (1/5)

• XFEL (DESY-Germany) – European X ray Free Electron Laser (17.5 GeV)

800 SC Cavities, 100 cryomodules

9 Cells Nb cavities, 2 K

23.6 MV/m (design gradient), $Q_0 \ge 10^{10}$, **1.3 GHz**

Cavity series production entirely made in industry

Coordination of production: DESY, INFN-LASA Cryo-module at CEA-Saclay Cold testing at DESY Average performance: ~ 30 MV/m with $Q_0 \ge 10^{10}$ Acceptance at 20 MV/m

Vertical test inserts

Operation with beam as from 2017

Successful first large scale industrial production (2012-2015)

Recent progress in SC RF Technology (2/5)

• FAST, Fermilab (USA)

FAST Accelerator, 300 MeV e⁻ beams
 31.5 MV/m, 1.3 GHz (2017), 2 K

One cryomodule, eight cavities

Commissioning with beam in Nov. 2017

Demonstration of ILC RF specification

- N₂ doping: high Q Exposure to N₂ at ~ 800 °C bake Q >3.10¹⁰, 35 MV/m
- N₂ Infusion: high gradient and high Q Exposure to N₂ at ~ 120 °C bake Q >1.10¹⁰, 45 MV/m

Recent progress in SC RF Technology (3/5)

Remove SLAC

LCLS2 (SLAC-USA) – Linac Coherent Light Source

280 SC Cavities, 35 cryomodules 9 Cells Nb cavities, 2 K, 1.3 GHz, CW mode

16 MV/m (operational gradient), $Q_0 \ge 2.7^{10}$ **19 MV/m** (test gradient), $Q_0 \ge 2.7^{10}$ Implementation of Nitrogen doping

In production

Cryomodule

RF Cavity

Recent progress in SC RF Technology (4/5)

• STF2 (KEK) – Superconducting RF Test Facility

February-March 2019: operation with beam Two half cryomodules (one with **2** and one with **7 cavities**) **9 cell cavities**

Beam energy ~ 270 MeV

32 MV/m

Demonstration of ILC RF specification

Progress in SRF Technology for Accelerators

Compact Linear Collider (CLIC)

380 GeV layout

Drive beam replacing the klystron

Normal-conducting 70-100 MV/m, 12 GHz cavities

CLIC Parameters

							-
	Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3	
	Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000	380 GeV-3 TeV
	Repetition frequency	$f_{\rm rep}$	Hz	50	50	50	
	Number of bunches per train	n_b		352	312	312	
	Bunch separation	Δt	ns	0.5	0.5	0.5	
	Pulse length	$ au_{ m RF}$	ns	244	244	244	
	Accelerating gradient	G	MV/m	72	72/100	72/100	72 MV/m - 100 MV/m
	Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9	-
	Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2	
	Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708	
	Main linac tunnel length		km	11.4	29.0	50.1	11.4 km – 50.1 km
	Number of particles per bunch	Ν	10 ⁹	5.2	3.7	3.7	
	Bunch length	σ_z	μm	70	44	44	
	IP beam size	σ_x / σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$	
	Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_v$	nm	900/20	660/20	660/20	
	Final RMS energy spread		%	0.35	0.35	0.35	
	Crossing angle (at IP)		mrad	16.5	20	20	-

Higher energies – Improved sensitivity for rare decays

SC MgB₂ Solenoid for X-band Klystron

CLIC-380 staging scenario X-band (12 GHz) klystron-based accelerating scheme

Beam-focusing solenoid $\sim 0.6 \text{ T}$ in a warm bore-diameter of 0.24 m

Cu magnet : ~ 20 kW/Klystron, ~ 100 MW for ~ 5000 Klystrons

MgB₂ magnet : < 2 kW/Klystron , ~ 10 MW --> 90 % power saving

Design Parameters							
Superconductor (T-operation)	MgB ₂ (@ 20 K)						
Current	50 A						
Central field	0.7 T						
Stored energy	~ 10 kJ						
Cryo-cooler applied	6.7 W @ 20 K 13.5 W @ 80 K						
AC Plug-Power	≤ 3 kW (< 1,5 kW/Klystron for a pair)						

System successfully commissioned at Hitachi in February 2019

Hitachi in-situ MgB₂ wire

 Φ =0.67 mm

Courtesy A. Yamamoto

Future accelerators: circular e⁺e⁻ colliders

Future High Energy Colliders - Studies

Circular e⁺ e⁻ Colliders

FCC-ee (Z, W, H, tt) as Higgs factory, EW and top factory at highest luminosities

FCC e⁺-e⁻ and CEPC

Double ring colliders - Circumference ~ 100 km - Two IPs Two RF straights- Common use of RF for both beams

CEPC CDR https://arxiv.org/abs/1809.00285

FCC e⁺-e⁻ and CEPC - Location

FCC

CEPC

SC RF for FCC e⁺-e⁻

c.m.e. 90 GeV \rightarrow 350 GeV

Baseline: SC cavities @ 400 and 800 MHz: 400 MHz for lower energy/higher beam currents: Nb/Cu @ 4.5 K

LHC cavities (400 MHz)

800 MHz cavities to reach highest energy/lowest beam currents:

Nb bulk @ 2 K

Jlab, Oct 2017

FCC e⁺-e⁻ and CEPC – SRF Cavities

	f _{RF} [MHz]	#cavities	#cell/cavity	V _{RF,tot} [MV]	acc. gradient [MV/m]	technology
FCC-ee-H	400	136 / ring	4	2000	10	Nb/Cu
FCC-ee-t	800	372	5	6930	19.8	bulk Nb
CEPC	650	240	2	2200	19.7	bulk Nb

CEPC – Collider Ring: 650 MHz Nitrogen doped fine-grain **Nb bulk** @ 2 K, 2-cell

CEPC – Booster: 1.3 GHz Nitrogen doped, fine-grain **Nb bulk** @ 2 K, 9-cell

• Nb₃Sn: primary alternative to Nb

Broader parameter space:

Higher Tc: 18 K

Higher Bsh: 425 mT \rightarrow Emax \sim 96 MV/m

Thermal diffusion of Sn vapours Liquid Sn diffusion Magnetron sputtering

Electrochemical plating studies at FNAL and Cornell **Magnetron sputtering** at CERN

S. Calatroni talk, EUCAS 2019

State of the art 1.3 GHz performance 16 – 22 MV/m (FNAL record)

Future High Energy Colliders - Studies

Future Circular Collider (FCC) STUDY

International FCC collaboration with CERN as host lab to study:

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
- e⁺e⁻ collider (FCC-ee),
 → potential first step
- *pp*-collider (*FCC-hh*)
 → long-term goal, defining infrastructure requirements

~16 T ⇒ 100 TeV *pp* in 100 km

The 16 T Nb₃Sn high-field magnet technology

Nb₃Sn state-of the-art: HL-LHC conductor

....

Total procurement ~ 30 tons

								Effect of 15% Rolling		
	Lay-	Sub-El.	J _c (12 T),	J (15 T),	B _{c2} ,	J _c (16 T),	J (18 T),	RRR	Degradation in %	
	out	size	σ	σ	σ	σ	σ	σ	,	DDD
		[µm]	[A/mm ²]	[A/mm ²]	[T]	[A/mm ²]	[A/mm ²]	-	,	ллл
		10	2637,	1371,	24.2,	1064,	581,	158,	•	
RRP 0.7 mm	100	46	82	74	0.5	70	61	40	U	44
RRP 0.85 mm	108 . / 127		2797,	1573,	25.9 ,	1266,	769 ,	135,	0	51
(75 hrs @ 665 °C)		55	53	43	0.3	41	36	25	U	71
RRP 0.85 mm			2725,	1498,	25.4,	1194,	704,	226,	0	20
(50 hrs @ 665 °C)			61	47	0.3	44	38	39	U	30
PIT 0.85 mm	192	39	2267,	1317,	26.9,	1075,	681,	193,	6	0
Bundle Barrier			46	28	0.3	25	19	17		

A. Ballarino

FCC Nb₃Sn Targets

FCC Jc target vs HL-LHC performance

Needed: 7000 tons - 9000 tons superconductors

CERN FCC Conductor Development Program

A world-wide effort

CERN FCC Conductor Development Program

TVEL, Φ = 1mm

A. Ballarino

Nb₃Sn New Developments (1/3)

18001700

16001500

1400

1300

1200

1100

mm²/

Internal Oxidation Process at Fermilab

Record Jc in multi-filamentary ternary APC wires: Jc (16 T, 4.2 K) > 1500 A/mm²

Oxygen source: SnO₂ powder

1000T3912-0.84mm-685C/236h 900 Nb-1wt%Zr -7.5 wt% Ta 800 Non-Cu T3912-0.84mm-700C/120h 700 600 Birr = 27 TT3912-0.84mm-500 400 **RRP00076-**675C/384h Bc2 = 27.8 T 0.85mm-665C/75 300 Φ = 0.71 mm Φ = 0.84 mm 200 PIT31284-100630C/100h+640C/50h Fermilab Room for further Hypertech 16 24 process optimization Magnetic field, B, T Ohio State University

67

Criterion: 0.1 µV/cm

T3912-0.71mm-700C/71h

X. Xu et al, arXiv:1903.08121, 2019

FCC J_c specification

4.2 K

Nb₃Sn: new developments

Nb₃Sn New Developments (2/3)

F. Buta and C. Senatore

UNIVERSITÉ DE GENÈVE

Nb₃Sn New Wire Developments (3/3)

Alloying Nb-Ta with Hf – no Oxygen source - at ASC

S. Balachandran et al., Supercond. Sci. Technol. 32 (2019) 044006

FCC 16 T Magnets

Challenges of Nb₃Sn high-field magnets:

- Conductor performance/development
 - Jc at 16 T;
 - Mechanical performance of wires
- Electrical insulation
- Mechanical design of magnets
- Field quality
- Training and training memory
- Quench protection
- > Magnet thermal management
- Manufacturing
- > Cost

Nb₃Sn Dipoles – Record fields (> 12 T)

FCC 16 T Dipole Magnet

Size compatible with possible integration in LHC tunnel for HE-LHC

A. Ballarino
High-Field Magnet Program

EU EuroCirCol WP5 (CEA, CERN, CIEMAT, UNIGEneva, KEK, INFN, TampereU, UTwente)

• Feed the FCC CDR with design and cost model of 16 T magnets.

CERN FCC 16 T Magnet Development, supporting:

- conductor development & procurement
- R&D magnets and associated development
- model magnets

US Magnet Development Program (ASC/NHMFL, BNL, FNAL, LBNL)

- 14-15 T cosine-theta magnet
 - Design, manufacture, and test of a 2-layer 10 T CCT magnet.
 - Novel diagnostics and advanced modeling techniques.

Fresca 2 Nb₃Sn Dipole

A. Ballarino

US-MDP Dipole Magnet Demonstrator

cosθ magnet 60 mm aperture 4-layer graded-coil

Nb₃Sn RRP® Conductor

Length = 1 m OD cold mass < 610 mm Record field for accelerator quality dipole magnet

Maximum design stress: 200 MPa at 15 T and 4.2 K Conservative pre-load of < 150 MPa for 14 T qualification Magnet conductor limit for the wire J_c(12T,4.2K)~2.65 kA/mm² Courtesy A. Zloblin

R3464

Ø325

SPPC 12-T Dipole with IBS

Q. Xu

Iron based superconductors for SppC

A. Ballarino

HTS Conductor: REBCO (16 T and beyond)

Fantastic Jc at 4.2 K in high magnetic fields !

Eucard 2, $\cos\theta$ dipole, Roebel cable 5 T at 4.2 K, to be tested in 2019

Layout	Unit	Cost B
lop	kA	10.06
Вор	т	5
Bpeak	Т	5.8
Ic	kA	15.2
LL margin	(%)	34
T margin	К	30
Sd. inductance	mH/m	0.73
coil inner radius	mm	24
yoke inner radius	mm	50
yoke outer radius	mm	110
Nb. of turns	+	17
Unit len. of cond.	m	24

Eucard 2 Feather 2, Roebel cable, 3.35 T at 5.7 K

Supercond. Sci. Technol. 31 (2018) 065002 J. Van Nugteren, G. Kirby et al.

Eucard 1 Insert, 4-tape stack cable, 5.37 T at 4.2 K

Tested in stand-alone at CERN

BSCCO 2212

Best conductor properties depend sensitively on cooling rate: these 20% fill factor conductors have J_E (16 T) = 1300 A/mm² and J_c = 6500 A/mm² with RRR (Ag) > 100 and no need for diffusion barrier

D. Larbalestier, FCC Week 2019, Brussels

persistent-mode NMR magnet.³

2. K. Ohki et al., Supercond. Sci. Technol. 30 (2017) 115017

3. T. Yamazaki et al., Presented at ENC2019.

Other technologies: Muon Colliders

• Muons:

Very large mass (207 time that of electrons)

Sort lifetime (2.2 µs at rest)

- Muon Colliders:
 - Very high energies (no synchrotron radiation)
 - Challenge of luminosity (short lifetime of muons)
- 30 T 40 T Solenoids for transverse beam cooling \rightarrow HTS Technology

32 T Record Field Solenoid (2017) at NHMFL

 $\frac{20^{1}}{5} \frac{10}{15} \frac{15}{20} \frac{25}{25} \frac{30}{30}$ nology $\sqrt{s_{\mu}} \text{ [TeV]}$

Input to the European Particle Physics Strategy Update

The Muon Collider Working Group

Development of demanding technologies and innovative concepts are required

500

200

100

50

TeV

sp S

14 TeV μ Collider \rightarrow 100 TeV proton collider

Conclusions

- For future linear colliders focused on Higgs factories technology and SRF are considered mature
- Future circular lepton colliders are combining concepts and techniques developed, implemented and demonstrated by past and present circular colliders. Mature beam physics and technology
- Future hadron colliders are based on high-field Nb₃Sn and/or HTS magnets, whose development represents a challenging R&D requiring longer term planning and funding
- Continuous R&D effort is very important for all future accelerators. Effort is on cost reduction, energy saving and proving technological feasibility of challenging targets

Thank you for your attention !

"Along with "Antimatter" and "Dark matter"

we have recently discovered the existence of "**Doesn't Matter**"

which appears to have no effect on the universe whatsoever"

"Along with 'Antimatter,' and 'Dark Matter,' we've recently discovered the existence of 'Doesn't Matter,' which appears to have no effect on the universe whatsoever."