

Flux Pumps

Superconducting Wireless Power

Superconducting Power Switches

James Gawith University of Cambridge Electrical Power and Energy Conversion Group

Flux Pumps

- Wireless power supplies for superconducting magnets
- Provide thermal, mechanical, electrical isolation of magnet
- No high-current DC supply or current leads required

University of Cambridge/NHMFL Application: High Field Magnets

University of Cambridge Application: Compact MRI

Victoria University Wellington Application: Rotating Machines

'Transformer-Rectifier' Flux Pump

- Normal to HTS transformer -> HTS rectifier -> Load magnet
- SPICE simulation developed for optimisation
- Key components are superconducting switches

HTS AC Field Switch

• Off-state by dynamic resistance

- Does not exceed J_c , T_c , or B_c
- **100A** I_c to **9m** Ω off-state with **2cm²** active material
- <10ms transition times

Switch Characteristic at 8.8kHz, 50mT

HTS Power Electronics?

- Semiconductors dominate currently
- HTS competitive at high current and low voltage/frequency
- Widen applicability
 - Improve materials
 - Improve design
 - Explore **actuation** methods

Thanks for Listening!

Contact:

James Gawith jddg2@cam.ac.uk

PhD Funding:

Cambridge Trust Woolf Fisher Trust Fitzwilliam College

Talk later this morning: Wed-Mo-Or12 - Flux Pump and Cryostats

Cambridge EPEC Superconductivity Group Supervised by Dr Tim Coombs

