

Quench Protection of Very Large, 50 GJ Class and High-temperature Superconductor Based Detector Magnets

Matthias Mentink,

Alexey Dudarev, Tim Mulder, Jeroen Van Nugteren, and Herman ten Kate

Magnet Technology conference, 10/21/15, Seoul (Korea)

Content

- 8 T, 50 GJ detector magnet using CORC-CICC conductor
- Minimum Quench Energy (MQE) and Thermal runaway
- Classical quench protection, heaters, Quench Back, Extraction
- Novel Approach: Rapid Quench Transformation Concept
- Conclusion

Motivation

Development of Conductor-On-Round-Core (CORC) Cable-In-Conduit-Conductors (CICC)

- CORC-CICC: Excellent superconducting properties, no high temperature reactions needed, AC loss reduction through striation, solder-coating and copper stabilizer for stability, good mechanical properties, excellent stability at elevated temperatures (i.e. no training)
- Rapid enhancement in CORC performance in recent years, latest record: 340 A/mm² at 17 T, 4.2 K (Ten Kate et al., 3PoBD_2)
- Development of first six-around-one Cable-In-Conduit conductor, 45 kA at 10 T, 4.2 K, currently being finalized (Mulder et al., 3PoBD_0)
- Development of tapering solution for low-resistivity homogeneous current distribution at joint terminals (Mulder et al., 30rAB_06)
- But what about Quench Detection and Protection at elevated temperatures?

 \rightarrow Perform a preliminary analysis of quench behaviour in a large detector magnet operating at 40 K 2

8 T, 50 GJ detector magnet operating at 40 K

		Property	Value	Property	Value
Support cylinder	Radial direction 12 layers Axial direction	Coil length	20 m	B _{center}	8.0 T
Conductor jacket Radial direction		Coil inner radius	5.0 m	B _{conductor}	8.5 T
Dim: $80 \times 80 \text{ mm}^2$ 12 laye		Coil outer radius	6.4 m	Stored energy	50.0 GJ
Superconducting cable Radius: 22 mm Secondary normal conductor Dim: 80x40 mm ²	50 windings	Number layers	12	Operating current	49 kA
	Number turns	250	Self-Inductance primary circuit	41.5 H	
		Operating temp.	40 K	Coupling coefficient	99.9%

Conceptual design of an 8 T, 50 GJ HTS-based superconducting magnet

- Operates at 40 K, for the purpose of investigating quench behaviour at elevated temperature. Excellent stability due to 500x enthalpy margin, ≈10x lower cooling cost than at 4.5 K
- 1 mm fiber glass-epoxy insulation between turns, 2 mm to support cylinder
- Layer-wound (CMS-like) geometry, with grading to minimize the required amount of HTS tape
- Primary and secondary (RQT) circuit, electrically insulated except for electrical connection at approximately half of the total cable length (i.e. between 6th and 7th layer)
- RQT conductor (Al-2%Ni, RRR=170, Yield strength ≈160 MPa) in secondary circuit provides mechanical support for conductor in primary circuit, in addition to assisting protection.

50 kA CORC-CIC Conductor assumed

Demonstration conductor: 6-around-1 Conductor-in-Round-Core (CORC) Cable-in-Conduit Conductor (CICC)

Assumed conductor: Conduction-cooled Cable-in-Conduit with relatively poor electrical / thermal contact between cable and jacket

- Graded Conductor-on-Round-Core (CORC) Cable-in-Conduit Conductor (CICC) operating at 90% of I_c at 40 K in each layer.
- Assumption #1: decent electrical and thermal conductance within cable (solder-coated ReBCO tapes, minimal amount of layers).
- Assumption #2 (worst case): Poor thermal conductance (1 mm of epoxy) and no electrical conductance to jacket.
- Assumption #3: normal state behaviour of cable dominated by copper (RRR=150), 85% of cross-section.

T and B dependence of ReBCO critical current

Temperature and field dependent I_c, after Xu et al., Phys. Rev. B. 86 (2012)

- ReBCO: Superconducting until ≈80 K → CORC-CICC is superconducting even at temperatures well exceeding current sharing temperature.
- Conductor grading (each layer operating at 90% of I_c): temperature dependent normalized I_c of each layer approximately overlaps, in spite of different applied fields
 - 2.5 K temperature margin
 - 500x enthalpy margin compared to 4.5 K, due to non-linear heat capacity.
- Critical current approximately inversely proportional to magnetic field, in the 40-60 K range.

Thermal simulations: Minimum Quench Energy (MQE)

t = 100 s

100Initial T_{Hotspot} [K] $T_{\text{Init,crit}} = 50 \pm 1 \text{ K}$ 110 Hotspot temperature [K] MQE = 2.1 ± 0.3 kJ 90 51 100 49 80 90 47 80 70 70 60 60 50 50 40 Current sharing temperature 10^{0} 10^{-1} 10^{1} 10^{2} Time *t* [s]

- MQE calculations: Locally (200 mm cable section) elevated temperature → Determine occurrence of thermal runaway.
- Considers local temperature dependent superconducting properties.
- Result: thermal runaway occurs when $T_{\text{initial}} > 50 \pm 1$ K, equivalent MQE = 2.1 \pm 0.3 kJ.
- Validation: consistent MQE (within error margin) for 50 mm cable section, thus implying point-source-like behaviour.

Thermal simulations: locally degraded J_c -> thermal runaway

- Thermal runaway due to locally degraded I_c : local (200 mm section) degradation in I_c to 85% of nominal I_c (operating current at 90% of nominal I_c).
- Heating \rightarrow Initial slow rise, accelerating with increasing temperature.
- T_{hotspot} increases over time: 60 \rightarrow 100 K: \approx 20 s, 60 \rightarrow 400K: \approx 100s
- Very slow quench propagation velocity: ≈20 mm/s

Problem #1. Quench Detection

Very sensitive quench detection needed

- Monitoring for resistive voltage complicated due to presence of inductive noise
- Typical detector magnet threshold level: 1000 mV (such as CMS [1])
 - But, at 1000 mV, T_{hotspot} already at room temperature
 - < 20 mV to limit $T_{hotspot}$ to just below 60 K --> 50x reduction in inductive noise needed
- How to reduce inductive noise?
 - Co-wound voltage taps?

Problem #2. quench mitigation

- Very slow quench propagation velocity: ≈20 mm/s --> Entire coil winding needs to be heated to induce a normal zone throughout the coil winding
- Need T >> T_{sh}, for instance 60 K --> Enthalpy between 40 and 60 K: 10 GJ for entire coil winding
- Thermal runaway duration: 60 K --> 100 K: ≈20 s. Must raise T to 60 K in about 20 s --> 500 MW!
 - Quench heaters: not feasible high power needed (several times total power consumption of CERN)
 - Quench back: Dissipation whenever there is dI/dt, so 500 MW of dissipation at 1000 V extraction means 2.5 MW of cooling power required at 70 V (regular ramping).
 - --> Quench heaters and quench back are not feasible.
- Extraction with dump resistor
 - Feasible, but high voltage (>20 kV) required for $T_{hotspot}$ < 100 K (challenging conductor insulation)

Novel quench protection: Rapid Quench Transformation (RQT)

Rapid Quench Transformation (RQT): solves two problems at once:

- Used with a geometry with high magnetic coupling factor (here: 99.91%)
- No current transfer to secondary RQT coil while ramping due to blocking diodes
- Solution for problem #1: co-wound coil (functions as a co-wound voltage tap):
 - More than 100x reduction in inductive noise for low-threshold quench detection
 - Experimental demonstration [2]: 80x more inductive noise suppression with co-wound coil compared to balanced coil approach

--> 20 mV threshold is feasible, so quench detection at $T_{hotspot}$ just below 60 K.

 Solution for problem #2: After Quench Detection → Transform your way out of trouble (variation of an old concept, [3,4])
[2] Ariyama et al. Presented at EUCAS confe

Rapid Quench Transformation: quench mitigation (1)

50 50 40 Current [kA] ³⁰ 25 8 10 Primary circuit ROT circuit 10 0 1000 2000 5000 6000 Ô 3000 4000 Time $t - t_{detect}$ [s]

 $\frac{dI_{\text{sup}}}{dt} = \left(\frac{1}{1-k^2}\right) \left(\frac{-V_{\text{sup}}}{L_{\text{sup}}} + \frac{MV_{\text{RQT}}}{L_{\text{RQT}}L_{\text{RQT}}}\right)$ $\frac{dI_{\text{RQT}}}{dt} = \left(\frac{1}{1-k^2}\right) \left(\frac{-V_{\text{RQT}}}{L_{\text{RQT}}} + \frac{MV_{\text{sup}}}{L_{\text{RQT}}L_{\text{RQT}}}\right)$

Rapid Quench Transformation:

- --> transform your way out of trouble.
- After quench detection:
 - Fast dump breaker opens \rightarrow Current transfer to RQT circuit
 - Transfer speed determined by magnetic coupling factor k

 $k = 99.91\% \rightarrow 1/(1-k^2) = 560x$ faster than RL-time

--> Just under 50% current transfer to RQT circuit in about 4 s

• Peak extraction voltage: 1500 V (just resistor), or 1000 V (60F supercapacitor array parallel to main dump resistor).

Rapid Quench Transformation: quench mitigation (2)

- Before quench detection:
 - Hot-spot heating until 20 mV detection threshold is reached (at $T_{hotspot}$ just below 60 K)
- Quench detection: current transformation into RQT circuit
 - Hot spot heating is dramatically reduced, due to reduced current: 10x reduction after couple of seconds, and then continues to drop
 - RQT circuit homogeneously heats up the entire cold mass
- After current extraction:
 - Almost 80% of stored energy extracted, 20% dissipated in RQT coil
 - Peak temperature just above 60 K and maximum temperature gradient < 20 K

Variations of the RQT concept

- Multiple RQT circuits per primary circuit
- Further reduction in inductive noise
- Faster current transformation
- Reduced layer-to-layer voltage
- Stable current distribution between RQT circuits due to negative feedback loop.

- All energy dissipated in cold mass
- Superconducting switch provides dI/dt
- Most energy may be dissipated in RQT coil.

- All energy dissipated in cold mass
- Allows for individual homogeneous quench of a magnet in a string of magnets.

Conclusion

Preliminary study of the quench behaviour of a very large 50 GJ detector magnet using ReBCO-based CORC-CICC technology at 40 K

- Excellent stability in worst case scenario assumptions: MQE in the kJ range
- Very low quench propagation velocity: \approx 20 mm/s
- Thermal runaway time: 60 K \rightarrow 100 K in \approx 20 s
 - Not feasible to protect the magnet with Quench Heaters / Quench Back
 - Feasible is high-voltage extraction (>20 kV), but challenging for insulation.

Novel Concept: Rapid Quench Transformation (RQT)

- Possible alternative for "classical" quench protection solutions
- Co-wound geometry mitigates inductive noise (similar to co-wound voltage tap), thus enabling low-threshold quench detection
- No transformation during regular ramping, due to blocking diodes
- Very rapid current transformation after quench detection by opening a single breaker, followed by gradual extraction
- Concept may be applied for high extraction (as illustrated here) or complete dissipation in cold mass, and is compatible with bypass diodes for individual homogeneous quenching of a magnet in a string of superconducting magnets.