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Abstract - It is important for space research to study the behavior of fluids such as liquid oxygen and 
liquid hydrogen under weightless conditions (microgravity). In addition, since 1991 some magnetic 
ground-based stations have allowed compensating gravity and meeting space conditions. Magnetic devices 
allow low-cost microgravity experiments with unlimited time. The goal of these techniques is to reach the 
same or better conditions (residual acceleration of the studied fluid) than those during parabolic flights. In 
this paper, several specific distributions of the magnetic field are determined. These distributions allow 
compensating gravity by means of axisymmetric coils (solenoids). This paper introduces several 
distributions of the residual forces useful for different kinds of microgravity experiments.   
 
Submitted November 23, 2007; accepted January 31, 2008. Reference No. ST28, Category 6. 
Based on a paper submitted to Proceedings of EUCAS 2007; published in JPCS 98 (2008), paper # 012199
 
 
 

I. INTRODUCTION 
 
The sum of gravity and centrifugal forces is zero for a spacecraft, such as an artificial satellite, 
space station or spaceship maintaining a stationary orbit with the power unit stopped (when 
no impulse is acting on the spacecraft). When the spacecraft is not deformable and has no own 
kinetic moment, all its constituents are subjected to zero acceleration. This is the state of 
weightlessness. However, at the time of space flight, various phenomena, such as the rotation 
of the spacecraft, emission from a field emitter or the motion of an astronaut, can induce 
residual acceleration. The term “micro-gravity” is used when the residual acceleration is less 
than 10-2g. 
      The study of the material behaviour, in particular the fluids, under weightless conditions 
can be carried out by means of satellites or space stations, but is easier attained with parabolic 
flights, sounding rockets or drop towers. The magnetic levitation technique, which is still 
cheaper, allows one to counterbalance the gravity. This counterbalance holds for individual 
molecules constituting the levitating material, which amounts to simulating the space 
conditions on the Earth.  
     In 1991, Beaugnon and Tournier succeeded in magnetic levitation of water, graphite and 
some organic materials such as wood, plastic, ethanol, etc [1]. These experiments opened the 
way to other, especially those helping to understand the cryogenic fluid behaviour, such as 
liquid hydrogen or liquid oxygen, under weightless conditions [2, 3]. Among others things, 
the knowledge of the weightless fluid behaviour makes possible both development and 
improvement of booster rockets. 
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The magnetic force vector G
v

, specific to magnetic field distribution and introduced in Section 
II below, has an accurate value for each material. Table 1 provides some values of this 
quantity. 
 

Table 1. Values of G for some materials 

Substance 2BgradG=
v

(T2/m) 
O2(90K) 8 
NO (118K) 516 
H2 (20K) -986 
H2O (293K) -2717 
He (5K) -4174 
N2 (78K) -4578 
Xe (293K) -5661 

 
These values of G

v
 can be technically obtained in a 3D region of volume rapidly increasing 

with magnetic field and decreasing with increasing homogeneity of the compensation. 
Magnetic levitation does not allow us to obtain full gravity compensation in a 3D domain. 
Therefore, there exists a residual acceleration during magnetic levitation experiments. This 
acceleration can be approximately calculated [4]. For example, in order to levitate one cubic 
centimetre of liquid hydrogen at 20K with an inhomogeneity less than 1%, i.e., a residual 
acceleration less than 10-2g, it is necessary to use a 12T superconducting electromagnet. 
     Magnetic levitation experiments are always carried out within simple-layout solenoids, 
sometimes improved by ferromagnetic inserts. The present paper discusses more complicated 
magnetic field sources consisting of several windings, like in NMR coils. These sources allow 
one to attain various perfectly known residual acceleration configurations. The order of 
magnitude of the magnetic levitation homogeneity is similar to that of other facilities for 
carrying out experiments under weightless conditions. 
 
 

II. MAGNETIC FORCE AND INHOMOGENEITY VECTOR 
 
A magnetic field exerts a force density proportional to GB

rr
=∇ 2 , on weakly magnetic materials 

(dia- and para-magnetic materials) in vacuum, expressed as: 

 2
02

1 B..dV
fd

m ∇=
r

r

χμ , (1) 

where dV
fd
r

 is the magnetic force density (N/m3), µ0 the vacuum permeability (H/m), mχ  the 

magnetic susceptibility (dimensionless), B
r

 the magnetic flux density (T). 
A magnetic force density cannot be constant in a 3D domain, thus a perfect 

compensation of gravity is unreachable in a 3D region of space using only magnetic fields. 
This has been demonstrated in previous work [5]. 
The relative error between perfect compensation 1G

r
 and the effective compensation G

r
 at the 

considered point is defined by the inhomogeneity vector εr  : 

 
1

1

G
GG r

rr
r −=ε  (2) 
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ρμ0
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=  (3) 

where g
r  = 9.81 m.s-2 is the terrestrial acceleration, and ρ the density (kg/m3). 

In this paper, a method for determining the G
r

 field is developed; this method is of 
interest for the case of axisymmetric geometry (solenoidal coils). The method was first used 
by Garrett [7] [8] in order to obtain very uniform fields within solenoidal systems (NMR 
coils). This method starts with a harmonic decomposition of the scalar magnetic potential V 
in the useful zone assumed without currents (resolution of the Laplace equation). This 
suggests use of a spherical harmonic decomposition of the magnetic field. In this paper, the 
value of G

r
 is calculated according to these field harmonics.  

The configurations of the inhomogeneity vector εr , depending on the desired 
conditions of micro-gravity, can be expressed by the setting of some derivatives of the vector 
G
r

 equal to zero. These conditions allow calculating the field harmonics. To conclude; the 
determination of the corresponding field sources is obtained by resolution of the inverse 
problem of the magneto-statics, leading to determination of the spatial harmonic of the 
currents providing the desired fields. 

 
 

III. CALCULATING METHOD 
 
A. Definition of the Geometry 
The spherical coordinates can be reduced to the (r,θ) couple for an axisymmetric system. The 
symmetry axis is defined by θ = 0 in Figure1. The x-axis direction is chosen opposite to the 
gravity vector g

r : 
 

M
g 

x

y 

θ r 

er

eθφ 

 
Fig. 1. Spherical coordinates and geometry of the system 

 

B. Vector G
r

 at any Point in the Sphere 
The distributions of the field in a sphere of radius R0 , centred on O and called the working 
zone, are studied. The axisymmetric current sources are assumed to be either on the surface or 
outside of the working zone. An infinite number of current distributions can create the same 
magnetic field distribution within the working zone. In order to calculate the exact solutions 
of the magnetic field at any point of the space, the current sources are  assumed here to be 
made up of a surface current layer on the radius R0 sphere. One assumes the norm of the 
magnetic field at the centre to be equal to B1 : 

10 B),(B
rr

=θ  

 Previous work has demonstrated that the magnetic field has to be as high as possible to 
obtain the best magnetic compensation homogeneity [5]. This suggests the use of 
superconducting coils with a very high field. At the centre of the working zone (r=0), the 
value G1 of the norm of G

r
 perfectly counterbalances gravity for the considered fluid [5]:  
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10 G),(G
rr

=θ  

 The solution of the Laplace equation for the magnetic scalar potential, in spherical 
coordinates, leads to the components of the magnetic field. The boundary conditions provide 
two different solutions, a first one inside the sphere and a second one outside the sphere. 
 The inner and outer magnetic fields can be expressed by the Legendre polynomials Pn. 
The components of the n-th field harmonics, along the vectors re

r  and θe
r , are : 
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 The coefficients Cn will be calculated from the homogeneity conditions of the inner 
quantities. The continuity conditions allow determining C’n and the surface current density. 
The magnetic field expression (4) within the working zone can be obtained by an infinite 
number of current distributions, but the two relations (4) and (5) together are true only for 
surface current density on the R0 radius sphere. Relation (4) involves : 
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 The vector G

r
 is derived from this quantity : 
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 Any distribution of magnetic forces in a spherical free space cavity (without current) 
can be expressed by the expression (7), namely by the coefficients Cn. 
 
C. Magneto-gravitarian Potential 
 

The inhomogeneity vector is derived from a « magneto-gravitarian » potential ΣL (in meter) 
defined from the expression (2) : 

 zG
B

L −=
1

2r

Σ  (8)  

where B
r

 is the magnetic flux density (T), G1 the norm of the gradient allowing the levitation 
of the considered material [4] (T2/m), and z the height (m). If a static fluid, near its critical 
point, i.e., with a surface tension close to zero, is subjected only to gravity and the magnetic 
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force, then its free surface must be given by the equipotentials « isoΣL ». The new solution of 
the problem, dealing with the magnetic compensation of gravity, by the potential ΣL provides 
interesting results an example of which is given below. 

 

D. Choice of the Homogeneity Conditions and Residual Forces 

The conditions on the homogeneities define the values of the field harmonics NiiC ∈)(  by the 
conditions imposed on the n-th derivatives of the vector G

r
. Three distinct conditions are 

examined. Each one describes a specific inhomogeneity (resulting accelerations are 
symbolized by arrows in Figure 2) and leads to interesting experimental conditions of micro-
gravity. The residual acceleration vector is either orthoaxial, that is central in a plane 
perpendicular to the symmetry axis (a), or orthogonal to the yOz plane (b), or central (c). The 
equipotentials ΣL are respectively cylinders centred on the Oz axis, or a plane perpendicular to 
the Oz axis, or spheres centred on O. 

 

  

 

  

 

 
      (a)       (b)       (c) 
 

Fig. 2. Distributions of the residual accelerations symbolized by arrows. 

 

• In the orthoaxial case, ),r(r 0ε  tends towards zero, and requires : 

  Nn∈∀  , 0
0

0 =
=∂

∂
rr

),r(Gr
n

n
 (9) 

where Nn∈∀  means : for each n that is an element of the natural number set N. 

• In the orthogonal case, ),r(r 2
πε  and ),r( 2

πεθ  tend towards zero : 

 Nn∈∀  , 0
0

2
0

2 =
=∂

∂
=

=∂

∂

rr

),r(G

rr

),r(Gr
n

n

n

n ππ θ
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• In the central case, ),r(r 2
πε  and ),r(r 0ε  must be equal : 

 Nn∈∀  , 
0

2
0

0
=∂

∂
=

=∂
∂

rr

),r(Gr

rr
),r(Gr

n

n

n

n π
 (11) 

 

Equations (8), (9) and (10) allow one to calculate the values of the coefficients of the field 
harmonics Nii )C( ∈ , these values are given in Table 2. 
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Table 2. Values of the first six harmonics of the field for the three configurations 

 C1 C2 C3 C4 C5 C6 
Orthoaxial 

o
B
μ

1  
1

1
4 oB

G
μ  

3
1

2
1

24 oB
G
μ
−  5

1

3
1

64 oB
G
μ

 7
1

4
1

128 oB
G
μ
−  

9
1

5
1

1536
7

oB
G
μ

 

Orthogonal 
o

B
μ

1  
1

1
4 oB

G
μ  

3
1

2
1

48 oB
G
μ

  
0  7

1

4
1

3840 oB
G
μ

−  
9

1

5
1

46080 oB
G
μ

−  

Central 
o

B
μ

1  
1

1
4 oB

G
μ  

3
1

2
1

48 oB
G
μ
−  5

1

3
1

128 oB
G
μ

 7
1

4
1

6400
41

oB
G
μ

−  9
1

5
1

7680
23

oB
G
μ

 

  
It can be noted that the first two harmonics are the same in all cases. If the harmonic orders 
higher than two are zero, a fourth configuration appears in which the magneto-gravitarian 
equipotentials are spheroids with an eccentricity equal to two. 

 

E. Calculation of the Surface Current Density  

The determination of the currents from the established distributions of the field is an inverse 
problem in magnetism, with an infinity of solutions. The easiest theoretical solution is the 
surface current distribution on a sphere of radius R0 . In this case, the coefficients of relations 
(4) and (5) are linked as follow : 

 n
n

n C.R.n
n'C 12

01
+

+−=  (12) 

 According to relations (4), (5), (12) and the equality between the tangential components 
of the field and the currents, the surface current density harmonics are expressed as : 

 ϕθ e).(cosP.C.R.n
nK nn

n
n

11
01

12 −

+
+=  (13)  

 

IV. RESULTS OF THE NUMERICAL SIMULATION 
 
A numerical simulation of the different configurations of micro-gravity is possible by 
choosing the sources of current given by relation (13), with the values of the coefficients Cn of 
Table 2. In our simulation, the surface current density is arbitrarily truncated at the sixth 
harmonic. 
 The simulations are carried out on liquid oxygen at 90K, with a gradient G1=8T2/m and 
a magnetic field at the origin of B1=10T. The surface current density, previously obtained, is 
spread over a 0.5 meter radius sphere. 
 The figures in the first line of Table 3 are obtained with a finite element software. Inside 
a 0.4 meter sphere, the black arrows represent the vector εr , in fact the residual acceleration. 
The norm of the inhomogeneity (in %) is provided by the colour bar to the right of each 
figure. The bluish lines are the isoΣL (in meters). These isoΣL are also plotted in the second 
line of Table 3, according to an analytical calculation taking into account only the first six 
harmonics. In each figure of the second line is drawn a 0.4 radius circle because the scales are 
not normed. 
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Table 3. Representation of the three configurations with only the first six harmonics 

Orthoaxial Orthogonal Central 

 

 
 

According to Tables (2) and (3), the third harmonic seems to fix the anisotropy of the residual 
acceleration. The first three harmonics make it possible to fix, the magnetic field and the 
gradient at the centre, and the resulting acceleration vector, respectively.  

 
 

V. CONCLUSION 
 
The method, briefly described in this paper, partially uses previous work of our team [6]. This 
method provides elements of vital importance for the development of a magnetic levitation 
device. The practical design of the superconducting coils needed to create the desired 
magnetic fields is not introduced in this paper but will be the subject of further studies. The 
design of these devices uses the same methods as those employed for the superconducting 
coils of NMR systems. 
 This work introduced the useful concept of the magneto-gravitarian potential describing 
the residual forces when the magnetic compensation of the gravity is carried out. Various 
distributions of the resulting forces attainable by this method are possible. A good choice of 
the harmonic coefficients previously defined allows one to adapt the distributions. The 
various choices of the coefficients allow one to carry out a wide range of experiments in the 
ground-based simulation station of microgravity. The three examples introduced above lead to 
kinds of experiments interesting for the study of fluids or granular matter in space conditions. 
 This general method, succinctly developed here, can be adapted to other levitation 
devices, in a cylindrical geometry [4] for example. In this case, these devices could be built 
from multipoles as for particle accelerators: mainly dipoles, quadrupoles and sextupoles. 
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