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YQUENCH analysis code for REBCO (YBCO) coils. 
 
Finite difference thermal analysis, 
 analytic electrical and magnetic analysis. 
 
Conductor properties and thermal conductivity 
 as function of field and temperature. 

YQUENCH Analysis Code 

No explicit quench propagation velocity. 

     

The name YQUENCH is in recognition of the early code QUENCH by Martin Wilson. 

Pronounced why-quench, the name invokes with humor the serious question as to the 

reasons that a YBCO coil might quench, given the high stability of the conductor.  
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Extensive characterization of temperature dependence of REBCO 

critical current as input to quench analysis. 

Conductor Properties 

     

Analytic expressions, to be presented elsewhere, fit extensive data on the temperature 

and field orientation dependence of the critical current.   
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Thermal Conductivity 
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Analysis Kθ and Kz 

Measurement Kr  

Thermal conductivity of windings determined by 

analysis and measurement. 

Kθ > Kz > Kr     

H. Bai 2LPQ-01 
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Pancake wound 

Dry wind 

Steel co-wind reinforcement 

Un-insulated conductor 

Insulated co-wind turn insulation 

 
    
Field total      32   T 

Field increment QPC  17   T 

Inner winding diameter 52 mm 

Outer winding diameter 212 mm 

Winding length  214 mm 

Operating Current  180 A 

Current density average 200 A/mm2 

Current density copper 440 A/mm2 

The Quench Protection Coil is a representative high field REBCO coil chosen to 
illustrate aspects of protection analysis. 

QPC 

REBCO coil 

Outer LTS coil 

Quench Protection Coil 
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    Coil 1 Coil 2 Coil 3 
 
Current (A)   180 180 180 
 
Copper thickness (µm)  100 80 60 
 
Copper current density (A/mm2) 440 549 732 
 
Average current density (A/mm2) 200 222 250 

Versions of the Quench Protection Coil have decreasing amounts of copper in the 
conductor with corresponding increase in current density. 

Quench Protection Coil 

Conductor Copper Thickness Variations 
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Single Turn Ring Multiple Turn Ring Single Turn Arc 

Quench Initiation by Low Critical Current 

Analysis of quench initiated by 

 significantly reduced critical current 

  in single and multiple turns of conductor, 

   and in a short arc segment of a turn. 

  

In this presentation, the source of quench is limited to the case of 

low critical current in a turn or arc segment of a turn. 
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The REBCO coil is assumed to contain conductor 

with uniform critical current specification. 

 

The variation of field and field angle gives a large 

distribution of local critical current in the coil.  

Disk or pancake number   1 5 24 

Critical current/Operating current 1.34 1.91 4.52 

Ic/Io 

Coil Critical Current 

Operating current 

Critical current 
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Ramping Loss Heating 

No surface 

cooling. 

 

Quench during 

ramping. 

Ramping loss heating is calculated for REBCO coil under various 

conditions of coil surface cooling. 

A. V. Gavrilin 1LPS-05    J. Lu 2MPA-05 

  

With no surface cooling, the QPC quenches during ramp to field. The 

temperature profile just prior to quench is shown. 
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Ramping Loss Heating 

Ramping loss heating is calculated for REBCO coil under various 

conditions of coil surface cooling. 

Cooling on 

radial outer 

surface only. 

 

Significant 

temperature 

increase. 

 

The efficiency of cooling on various surfaces depends on the directional 

thermal conductivity. Radial thermal conductivity is least effective, and 

cooling on the outer surface alone leaves a large temperature increase. 
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Ramping Loss Heating 

Ramping loss heating is calculated for REBCO coil under various 

conditions of coil surface cooling. 

Cooling on axial 

end surfaces 

only. 

 

Limited 

temperature 

increase. 

   

Axial thermal conductivity is greater and with 50% heat transfer area to liquid 

helium at the coil ends, the entire length of the coil is effectively cooled. 
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Ramping Loss Heating 

Ramping loss heating is calculated for REBCO coil under various 

conditions of coil surface cooling. 

Cooling on end 

and outer 

surfaces. 

 

Lowest 

temperature 

increase. 

    

Given the effectiveness of surface cooling, the temperature increase of 

ramping loss is ignored in the subsequent quench analysis.  
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Cooling Capacity of Windings 
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Temperature depends on location and extent of source. 

 Coil ends are cooler, larger sources warmer 

  on per unit volume basis.  

Temperature rise calculated from local steady state heat load. 

    

In order to select the initial conductions for a quench in 

a realistic manner, the stability of turns was examined. 

For a single turn, a reasonable correlation between a 

heat balance stability condition and calculated thermal 

runaway was observed. 
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Cooling and Heating 

Cooling of windings to helium Power dissipation in conductor 
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decreasing critical 

current 

Power/volume in conductor at 

 constant operating current of 180 A, 

  as function of temperature 

   for decreasing critical current.  

Cooling power/volume for rings of 

 conductor at selected location 

  as function of temperature. 
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Stability Criterion 
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A. L. Rakhmanov et al, Cryogenics 40 (2000) 19-27 

V. S. Vysotsky et al, IEEE Trans. Appl. Supercond. 11, 1824 (2001) 

   

Stability is a balance 

between heating and 

cooling, as described by 

Rakhmanov. As the local 

critical current is reduced 

further below the 

operating current, the 

increased conductor 

heating results in thermal 

runaway.  
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Quench of Single Turn 

Single Turn Ring 

Quench of the QPC is examined 

  for quench initiated by a single turn. 

 

As the critical current of the single turn ring is reduced, 

 the power dissipation increases. 

 

 As thermal stability is exceeded, rapid thermal runaway 

occurs and quench is initiated.  
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Thermal runaway and quench onset 

 at the limit of stability for a single turn. 

Stability critical current ~0.92 x operating current. 

Stable temperature limit ~ 5.1 K. 
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f Ic 0.935

f Ic 0.938

f Ic 0.942

 

It is interesting to 

observe that a faction of 

an ampere of critical 

current separates a 

stable state from one 

that experiences thermal 

runaway in a matter of 

seconds. 
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Evolution of quench in single turn without protection. 

   

The temperature evolution of a single turn quench in disk 5 of QPC. 
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Unprotected quench of single turn, 

 temperature continues to rise without significant 

  radial or axial quench propagation. 

Evolution of quench in single turn without protection. 
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Quench of Single Turn Arc 

Quench of the QPC is examined 

  for quench initiated by a single turn arc 

  of 80 mm length. 

 

As the critical current of the single turn ring is reduced, 

 the power dissipation increases. 

 

 As thermal stability is exceeded, rapid thermal runaway 

occurs and quench is initiated.  

 

Single Turn Arc 
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Evolution of quench in single turn arc without protection. 

  

Thermal runaway 
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Unprotected quench of single turn arc, 

 temperature continues to rise without significant 

  radial or axial quench propagation, 

   but with full angular spread. 

Evolution of quench in single turn arc without protection. 
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Prior to Thermal Runaway 

 

Prior to thermal runaway, the temperature increase is slow and the  

constant spread reflects the lack of quench propagation.  
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Thermal Runaway 

   

Thermal runaway is characterized by a rapid increase in temperature. 

IEEE/CSC & ESAS European Superconductivity News Forum (ESNF) No. 23  January 2013

25 of 62



After Thermal Runaway 

Following thermal runaway, increased temperature spreads by 

thermal diffusion along the direction of the conductor. 
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Classic Protection Schemes 

Self- 

Protection 

External 

Discharge 
Heaters Shunts 

Self-protection methods rely on quench propagation which is limited for REBCO 

conductor. External discharge of low current coils is typically associated with high 

voltage. Distributed heater protection is examined here. Shunts have been used 

historically on tape magnets and may find application to REBCO coils. 
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Distributed Heater Quench Protection 

test coil heater spacer 

distributed heater concept 

32 T magnet heater spacer 

Active protection system. 

Heater elements embedded in spacers 

between modules. 

Design considerations: 

  number of heaters in coil, 

  heater element distribution in spacer, 

  heater operation power. 
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Heater Performance Test 

Test coil O.D. 124 mm, tested in 20 T background field, 

    heater tests at 200 A operating current over range of currents, power. 

Data establishes value of heater rise time parameter in YQUENCH. 

  

P.D. Noyes et al, IEEE Trans. Appl. Superconduct., 22, 3, 4704204 (2012) 
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Discharge of Quench Protection Coil 
with Heaters  

   

Heater performance and design considerations 

associated with the heaters are demonstrated 

through the forced quench of the QPC by activation 

of the heaters. 
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Heater Design Aspects 

Heater power requirements 

 are large  n x 10 kW. 

 

Motivation to limit heater distribution. 

 

Heaters placed 

  

 every double pancake 

 

        or   every other double pancake. 

 

heaters 
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Heater Design Aspects 

Heater power requirements 

 are large  n x 10 kW. 

 

Motivation to limit heater distribution. 

 

Heaters placed 

  

 50 % disk coverage 

 

        or   25 % disk coverage. 

 

heaters 
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Heating is largely limited to disks adjacent 

     to the protection heaters. 

The heaters primarily quench the end modules of the coil, 

     leaving central modules superconducting. 

coil axis 

Module Temperature Rise with Heaters 

Every other 

module (DP) 

50 % coverage 

  

In this and subsequent 

examples, it is seen that 

the heaters are relatively 

inefficient, quenching 

only the ends of the coil. 

This is largely the result 

of large critical currents 

in the center of the coil. 

One strategy for 

protection is reduced 

critical currents where 

the radial field is limited. 
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Module Temperature Rise with Heaters 

coil axis 

50 % coverage 

Heaters every double pancake eliminates axial gradients 

at expense of heater power. 

  

Every 

 module (DP) 

In this set of examples, 

the coil is quenched by 

the action of the heaters 

and as a result, the 

maximum temperature is 

relatively low. In an 

actual quench situation, 

the temperature at the 

origin of quench has 

already increased 

significantly by the time 

the heaters are 

activated.  
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Module Temperature Rise with Heaters 

Heater disk coverage of 50 % and four fold symmetry 

gives relatively uniform temperature in pancake.  
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Module Temperature Rise with Heaters 

Heater disk coverage of 25 % and two fold symmetry 

reduces heater power requirements accordingly, but gives 

larger temperature distribution in pancake.  
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Module Temperature Rise with Heaters 

coil axis 

Reduction of heater coverage reduces overall heater 

power requirements at expense of reduced heater 

efficiency at center of coil.   

25 % coverage 

  

Every 

 module (DP) 

The rather limited 

quench temperature rise 

is partly the result of the 

limited stored energy in 

the example coil, but it is 

also the result of a 

relatively rapid increase 

in coil resistance and 

consequent rapid 

current decay, as will be 

seen subsequently.  
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 Quench Protection Coil 
with Arc Quench 

and Protection Heaters  

 

The action of the protection heaters is shown for a quench 

in disk (pancake) 5 of the QPC initiated by low critical 

current in an arc segment. The temperature rise in the 

disk is given in a sequence of slides, showing the local 

hotspot and more general temperature increase resulting 

from the heaters. Then the effect on the critical current is 

shown, starting with the local low critical current of the 

segment that initiates the quench and showing the general 

collapse of the critical current as a result of the 

temperature increase caused by the heaters. 
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Temperature of Quench Initiation Disk 

    

Quench 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 

  

Heater 

activation. 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 

 

After this time, the 

maximum 

temperature begins 

to decrease due to 

thermal conductivity 

out of the hotspot. 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 
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Temperature of Quench Initiation Disk 
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Critical Current of Quench Initiation Disk 

Reduced critical 

current initiates 

quench. 
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Critical Current of Quench Initiation Disk 
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Critical Current of Quench Initiation Disk 

  

Heater 

activation. 
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Critical Current of Quench Initiation Disk 
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Critical Current of Quench Initiation Disk 

   

Collapse of critical 

current as a result 

of heating. 
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Protection of Short Arc Quench 
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for Quench of Arc - or NotAnalysis of short arc 

quench gives uniform 

hotspot temperature with 

decreasing length, down 

to 32 mm. 

 

Arc of 4 mm length found 

to be fully stable 

independent of critical 

current. 

 

Stability of intermediate 

lengths uncertain. 

stable ? 

 

Can a short length of conductor go normal, fail to be 

detected and result in a high hotspot temperature? 

Apparently not. In fact, very short lengths may be 

fully stable. 
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Protection of Short Arc Quench 

Stable critical current distribution of normal 4 mm arc.  
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Protection of Short Arc Quench 

Stable temperature distribution of normal 4 mm arc.  
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Characteristicly, 

      the current decay of the REBCO coil is rapid 

 with distributed heater protection. 
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Total dissipated 
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Quench Evolution 

The heater energy dissipated in the coil is a small fraction of 

the dissipated stored energy. 
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Decreasing Copper Thickness 

Decreased conductor copper thickness results in 

 faster temperature rise and reduced time for quench protection, 

  as seen here for the initial temperature rise 

   at constant operating current. 
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The hotspot 

temperature of the 

example QPC is 

recalculated for 

various copper 

thicknesses. As the 

quench detection 

sensitivity increases, 

the hotspot 

temperature is 

reduced.  
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Discussion and Summary 
 

Quench in REBCO high field coil examined for case of locally 

reduced critical current. 

Quench current depends on size and location of reduced 

critical current region. 

Rate of temperature increase after thermal runaway 

depends on the copper content of the conductor, 

independent of the initial conditions of quench. 

Significant quench velocity along conductor is observed after 

thermal runaway. 

Protection heater effectiveness depends on local critical 

current. 

Copper current density of 400 – 500 A/mm2 appears 

feasible with heater protection. 
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