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-  Status of HTS devices development 
-  Good progression, many prototypes over the years 
-  Some commercial devices already exist (SFCLs, motors) 
-  Still need to reduce the cost of 2G HTS wires 
-  A few other things still deserve attention, e.g. 

-  cost and reliability of cooling systems 
-  mixture of high voltages and cryogenic temperatures 
-  etc. 

-  One common tool can help in addressing 
many of the above problems: 
-  Numerical modelling 

1) CONTEXT AND NEED FOR NUMERICAL MODELLING 
 

 EVOLUTION OF HTS DEVICES 
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-  Generic reasons (true in all fields) 
-  Allows optimization of devices + cost reduction by 

-  making the best use of materials and components 
-  reducing the number of prototypes during the 

development stage 

-  Reasons specific to HTS materials and devices 
-  Highly nonlinear/anisotropic E-M behaviour 
-  Hard to intuitively find 

-  geometric arrangements minimizing the losses 
-  the most economical configurations of windings 
-  etc. 

1) CONTEXT AND NEED FOR NUMERICAL MODELLING 
 

 WHY IS NUMERICAL MODELLING REQUIRED? 
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-  From a general/commercial perspective 
-  HTS devices performance is conditioned by its 

environment: notion of system  
-  There exists competing technologies 

-  Numerical modelling can be used to 
-  compare performances of different technologies 
-  assess the performances of HTS devices, either as 

-  individual devices (physical models, e.g. FEM) 
-  elements of a system (macroscopic models, e.g. 

equivalent circuit models) 

1) CONTEXT AND NEED FOR NUMERICAL MODELLING 
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-  Modelling of quench in 2-G HTS tapes 

C. Lacroix, 2013. 

1) CONTEXT AND NEED FOR NUMERICAL MODELLING 
 

 EXAMPLE OF PHYSICAL MODEL 
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-  Impact of SFCL in power systems 

C. Gandioli et al., IEEE Trans. Appl. Supercond., 23 (3), 2013 

1) CONTEXT AND NEED FOR NUMERICAL MODELLING 
 

 EXAMPLE OF MACROSCOPIC MODEL 
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Abstract—High Voltage Direct Current (HVDC) grids have
a wide potential of development, especially considering the
development of offshore wind power plants. In this paper, we
consider meshed HVDC grids. Meshing networks increases
the fault current. These very high currents are a drawback
for the system, and the fault clearing process requires new
technologies to break huge direct current. Therefore, high
speed protection and opening systems are currently investigated
in several institutions. Considering a differential protection
system, various opening systems can be used. But, in this study,
superconducting fault current limiters, using high temperature
superconducting tapes are used to reduce the dramatically huge
current to be broken by the DC breakers. Simulations with very
accurate models are used to justify the conclusions.

Index Terms—HVDC, SCFCL, protection system

I. INTRODUCTION

This paper investigates the benefits of superconducting fault
current limiters when they are included in the protection
scheme of DC grids. Indeed, protection of such grids is a key
issue to speed up the development of multi-terminal HVDC
networks. Research is currently done on detection algorithms
and on DC circuit breakers able to cut DC current in the range
of tens of kiloAmps [4].

First of all, the aim of the protection scheme is to guarantee
that no component of the grid (except for the faulty one)
will be destroyed by the overcurrent generated by the fault.
This restricts the response time of the protection scheme,
which depends on the components resistance to overcurrent.
The weakest ones are the diodes of the converters, and can
only withstand a maximal current of 2 per unit. On these
assumptions, the protections have a very short time to respond
(in the range of 10ms) including the time to detect the fault, to
discriminate between the faulty and healthy parts of the grid
and the opening time of the circuit breakers. Consequently,
the tripping of the circuit has to be done by semiconductor
based breakers or hybrid breakers reference, since mechanical

The research on SCFCL has been doing in the Eccoflow projet framework.
The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under Grant 241285.
The research on protection of DC grids has been doing in the Twenties
(Transmission system operation with large penetration of Wind and other
renewable Electricity sources in Networks by means of innovative Tools and
Integrated Energy Solutions) project, 7th framework programme ref 249812.

Fig. 1. Grid under study

circuit breakers for DC currents are too slow (in the range of
several tens of ms). However, semiconductor-based and hybrid
breakers are not able to cut DC current up to more than 15kA.
Thus, fault current limiters and particularly superconducting
fault current limiters (SCFCLs) can be included in the grid in
order to maintain the current to an acceptable value.

II. BEHAVIOUR OF A DC GRID UNDER FAULT CONDITIONS

The grid used to illustrate the cable insulation fault phe-
nomenon in a DC network is shown on Fig. 1.

This grid was simulated using EMTP-rv software. In
order to be acquainted with the signals (current and voltage)
behaviour under fault conditions as close as possible to
the reality, the model of two key components have to be
very accurate: the cables and the converter stations. In fact,
the signals have to reflect all the frequencies that might
be generated by a fault, and their mitigation along the
cables. Furthermore, the propagation of the signals and the
coupling effect between the two poles need to be taken into
account. Therefore, a complete cable model is required. The
WideBand model [1] is used; it computes the parameters
of the cable model for a large range of frequencies. Then,
the two-level converter stations are represented by a detailed
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Fig. 1. suggested configuration for a SCFCL

The grid meshing must be done only feeder by feeder. In-
deed, if we connect two feeders together through the lines, then
the protection system at the feeder points will no longer work.
In this part, we suggest to mesh the network from one feeder
and to settle a SCFCL in series with the transformer in the
substation. Figure 1 introduced the suggested configuration.

IV. PRINCIPLE OF THE ”QUICK DISCONNECTOR”

A. New distribution network topology

Nowadays, the distribution grid operates in radial topology.
That is to say that the loads are supplied by only one feeder.
In order to increase the DGs integration capacity of the distri-
bution network, one of the solutions is to mesh the distribution
grid. Changing the distribution network architecture, in some
region is not possible for example in urban region. And when
it is possible, this changing can be very expensive. In this
study, we suggest to slightly change the current architecture.
Indeed, the distribution grid is used in radial operation but it is
actually looped. Some normally open switchers are located in
order to be able to feed a part of the grid by another substation
in case of issue on one line. In order to increase the meshing
of the distribution grid, we suggest to close these normally
open switches as is shown in Fig. 2. This change is easy to
do and does not cost the utilities much.

B. Principle

Closing the normally open swhitches allows to increase the
DG’integration capacity of the network. But in case of fault,
the short-circuit will be higher than in a radial case. Therefore,
some devices of the grid and the protection system will have
to be designed and manufactured to suit the new short-circuit
current. In order to keep the same network devices and the
same protection system, we suggest to install an SCFCL in
place of a normally open switch (Fig. 3). Consequently, during
healthy operation, the SCFCL will have no resistance and the
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Fig. 3. FCL site in the network

grid will be looped. And, in case of fault, the SCFCL will
develop a resistance and the grid will be then unlooped by a
circuit breaker. This principle is detailled in [1]. In [1], the
consequences of this use of the SCFCL on the protection
system has been studied. A protocol to test the feasibility
of this is described. Considering a clear three phase fault,
the SCFCL hides the fault to the healthy part of the grid.
This kind of fault does not seem to be a issue for this
application. Single phase faults are more limiting because its
fault current can be very low compared to the rated current.
In addition, in order not to trigger the protection on the
earthing point of the substation transformers, it is necessary
to disconnect the SCFCL and revert to a radial topology as
soon as possible. These two constraints imply that the SCFCL
has to be designed with a critical current as close as possible
to the rated current. Consequently, the SCFCL will quench
as soon as the fault occurs and the network will be unlooped
quickly. In order to be able to decrease the critical current of
the SCFCL, the SCFCL must be settled at the lower current
point in normal operation. That is to say, it must be located
at the electrical middle point (line impedances) between the
two feeders. This constraint will impose the SCFCL placement
which is not necessarily at the normally open switch.

C. Severals SCFCLs interaction and architecture

The more the network is meshed, the better the
DGs’integration capacity will be. Therefore, looping only
two feeders may not be enough to increase the capacity of
DGs’integration. Consequently, if there are more than two
feeders looped, more than one SCFCL may be needed. The
aim of this part will be to find the minimal number of SCFCLs
for a given architecture and to study the interaction between
severals SCFCLs.

A parallel study has been done, searching the best normally
open switches to close in order to increase the capacity of
integration of DGs. We start from this looped architecture
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grid will be looped. And, in case of fault, the SCFCL will
develop a resistance and the grid will be then unlooped by a
circuit breaker. This principle is detailled in [1]. In [1], the
consequences of this use of the SCFCL on the protection
system has been studied. A protocol to test the feasibility
of this is described. Considering a clear three phase fault,
the SCFCL hides the fault to the healthy part of the grid.
This kind of fault does not seem to be a issue for this
application. Single phase faults are more limiting because its
fault current can be very low compared to the rated current.
In addition, in order not to trigger the protection on the
earthing point of the substation transformers, it is necessary
to disconnect the SCFCL and revert to a radial topology as
soon as possible. These two constraints imply that the SCFCL
has to be designed with a critical current as close as possible
to the rated current. Consequently, the SCFCL will quench
as soon as the fault occurs and the network will be unlooped
quickly. In order to be able to decrease the critical current of
the SCFCL, the SCFCL must be settled at the lower current
point in normal operation. That is to say, it must be located
at the electrical middle point (line impedances) between the
two feeders. This constraint will impose the SCFCL placement
which is not necessarily at the normally open switch.

C. Severals SCFCLs interaction and architecture

The more the network is meshed, the better the
DGs’integration capacity will be. Therefore, looping only
two feeders may not be enough to increase the capacity of
DGs’integration. Consequently, if there are more than two
feeders looped, more than one SCFCL may be needed. The
aim of this part will be to find the minimal number of SCFCLs
for a given architecture and to study the interaction between
severals SCFCLs.

A parallel study has been done, searching the best normally
open switches to close in order to increase the capacity of
integration of DGs. We start from this looped architecture
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-  Local temperature elevation in SFCL vs. fault impedance 

D. Colangelo and B. Dutoit, Supercond. Sci. Tech., 25 (9), p. 095005, 2012. 
F. Roy et al., Physica C, 469 (15), pp. 1462–1466, 2009. 
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Figure 4. Tape critical current inhomogeneity. Gaussian
distribution D1 has an average critical current of 365 A and
�% = 6.59.

Figure 5. Gaussian distribution discretization. Base array [Im] of
distribution D1 (a) and a random combination of the base array (b).

where Pj is the probability, in percentage, to find the critical
current Icj along the tape length. Finally, a new array
[Im[1⇥100]] has been built. The elements of [Im[1⇥100]] are
defined by

[Imj] = [Icj · ūj([1, int(Pj)])] (10)

where uj is an array of length int(Pj) of unit elements. SinceP20
j=1Pj = 100, [Im] has a length of 100 (corresponding to

the number of blocks) and it contains information about
critical current levels and their corresponding probability
(figure 5(a)). The relative position of [Im] (figure 5(b))
elements implies a different amount of thermal conduction
between blocks. Therefore, random permutations of [Im]
terms have been generated. Array [Im] and its combinations
have been implemented to the electrothermal model.

6. Influence of the stabilizer thickness

An RFCL device has been modeled with tapes D1 and
it has been studied in the equivalent circuit of figure 6.
Assuming an overcurrent of 20% Inorm (1 kA RMS), the

Figure 6. Equivalent circuit. The resistance RF has been varied
from 0 (clear three phase short-circuit fault) up to 30 �.

device can be built with six parallel conductors per phase
of inhomogeneity D1 (the minimum Ic is 0.85Ic,av with
Ic,av = 365). The external shunt impedance (Zs = Rs+j2⇡ fLs,
figure 6) determines the limited current allowed [8] and it is
normally imposed by utility companies requiring long fault
duration. The circuit breaker (CB1 figure 6) tripping time
(tCB) is about 80 ms. The thickness of the silver stabilizer
has been varied from 1.8 up to 4.8 µm. For each value, the
single conductor length has been chosen in order to respect
the maximum allowable temperature criterion of 360 K under
a clear three phase short-circuit (fault resistance RF = 0 �).
Even though it corresponds to optimizing the device against
the maximum prospective current, this approach does not
allow us to exclude thermal instability of the RFCL under
low values of fault current (RF � 0). Therefore, a correct
analysis of the thickness stabilizer should consider the whole
fault current range. Since we do not consider differences in
inhomogeneity between the paralleled tapes per phases, the
following dissertation refers to a single wire.

6.1. With RF ' 0

Under this condition, the current through each tape is much
higher than Ic,av. The transition to the normal state is
extremely rapid and homogeneous (all zones quench in the
same instant). The RFCL offers to the circuit its highest
impedance. During the limiting performance, the SC material
is stressed (Isc > Ic, av) for a few milliseconds (red line inset
of figure 7) and almost all the fault current is diverted to the
external shunt (blue line figure 7). A tape with a thin stabilizer
has a high resistance per unit length (Rpul). Therefore, for
given values of Zs and tCB, allows the temperature criterion
(360 K) to be respected, minimizing the lengths of the
paralleled wires, with evident benefits for the final cost of the
RFCL device.

6.2. With RF � 0

This subsection analyzes the influence of the wire stabilization
on the transient device performance in the case of a high value
of fault resistance (low value of fault current).

4
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Figure 7. Current sharing between the external shunt (Is), the SC
layer (Isc) and no-superconducting layers (Inosc) with tape
inhomogeneity D1, Zs = 2.7 � and RF = 0. The sc layer is stressed
only for a few milliseconds (inset).

Figure 8. Resistance profile of the device (a) and quenched length
of a single CC (b) for different silver stabilizer thicknesses under
RF = 14 � .

6.2.1. Low stabilization. Even if IF is around Ic,tot, due to
the tape inhomogeneity, the zones with low critical current
(Ic < 0.9Ic,av) may quench and limit the current through
the RFCL device. In the case of low silver stabilization
(e.g. 1.8 µm), those zones will introduce a high resistance
(figure 8(a) magenta line) and IF may suddenly fall below
Ic,av. As a consequence, zones with higher Ic (Ic > 0.9Ic,av)
may not have enough energy to quench (IF flows through the
SC layer, figure 9(a)). All the current is limited by a small
portion (limiting length, Llim) of the tape (figure 8(b)). The
temperature increase is mainly hindered by the heat capacity
of the quenched tape portion. Therefore if this portion is too
‘short’, some zones of Llim could exceed 360 K before the
intervention of CB1 (80 ms in our example).

6.2.2. High stabilization. Since the silver stabilization of
the tape does not influence the critical current inhomogeneity,

Figure 9. Current sharing between SC and noSC layers in blocks
having Ick/Ic,av = 0.95 with a silver stabilizer thickness of 1.8 µm
(a) and 4.8 µm (b) when the inhomogeneity is D1 and RF = 14 �.

Figure 10. Final temperature foreseen for different stabilizer
thicknesses. Base [Im] array (solid lines), without thermal
conduction (dashed lines) and three random permutations of [Im]
terms (only for thAg = 1.8 µm).

even with a more stabilized wire (e.g. 4.8 µm), zones with low
critical current (Ic < 0.9Ic,av) will quench. Differently from
the previous case, those zones will offer a lower resistance
(figure 8(a) blue line); hence, after the first peak a higher
current will flow through the RFCL device (black dashed line
figure 9(b)). More energy will be provided to zones with Ic '
Ic,av (IF ' Ic,av for longer time) that will quench. Compared
to the previous case, Llim is longer and so a higher heat
capacity contributes to the limiting performance. Figure 10
shows clearly that when RF ' 0, adjusting the single tape
length, it is possible to respect the temperature criterion in
all cases. On the contrary, extending the analysis to RF � 0
stabilizer thicknesses of 1.8 and 2.8 µm ‘leaves’ a dangerous
range of possible fault currents (blue and red lines), whereas
a higher stabilization (3.8 and 4.8 µm) guarantees thermal
stability against the whole range of fault currents.

5

Max temperature after 100 ms of a fault 

No quench 

pulses [8]. Nevertheless, some simulations have been done to ob-
serve the transport-current dependence of the NZPV. Fig. 5 allows
to observe this dependence for the same geometries and thermal
conditions as in the previous section, i.e. [adia], [adia-buf] and
[fct]. In this figure, we also include simulations for the base case
(without buffer layer and heat exchange), in the hypothetical sce-
nario where no current sharing between the silver and DyBCO lay-
ers is possible i.e. the silver layer acting only as a thermal
resistance [adia-ns]. For these particular simulations we observed
that the current-sharing effect becomes important only around
1.5Ic and above, being more pronounced in the hastelloy case than
in the sapphire case. In fact, it seems that the exchange of current
leads to a reduction of the NZPV due to a reduction of the cross-
sectional resistivity of the silver/normal-DyBCO parallel resistance
that is obviously less important than the normal-DyBCO resistance
alone. This 1.5Ic value correspond to a change in the propagation
scheme for the tapes and leads to an exponential growth of the
NZPV. As a matter of fact, over this threshold value, the power gen-

erated in the silver layer becomes more important and heat start to
travel more from the silver layer than from the DyBCO film by itself
– see Fig. 6. This scheme seems to be responsible of the exponential
growth observed on the NZPV curves – see Fig. 5. Since MgO acts as
an heat barrier along the thickness for the sapphire case, the buffer
layer have a significant effect on the NZPV for this case.

It is also interesting to note that, for both substrate, heat trans-
fer with the nitrogen bath do not seems to have an influence on the
NZP. This seems to be due to the fact that, for a significant sub-
strate thickness (90 lm in this case), heat is more absorbed by
the substrate than exchanged with the surrounding coolant. In that
sense, the adiabatic theory seems to be confirmed for the base case
geometry.

4. Conclusions

The strictly-thermal model developed in this paper is very light
in terms of computation time. It allows to observe important
parameters influencing the NZP by considering the problem from
a pure thermal point of view. With this model, we have shown that
the NZP depends strongly on substrate thermal parameters.

By comparing two substrates of very different properties, i.e.
sapphire and hastelloy, we have demonstrated how sapphire
shows better performance than hastelloy for FCL purposes. Indeed,
sapphire, which is a more diffusive substrate helps to heat and
switch regions of the line adjacent to the normal zone, which avoid
hot-spots formation.

Moreover, the substrate thickness have important effect on the
behavior of CCs. For the sapphire case, the presence of a relatively
thick buffer layer changes considerably the performance of the de-
vice, whereas they are not much altered in the hastelloy case.

Finally, the NZPV dependence on the transport current has been
illustrated. Over a threshold value of around 1.5Ic , the NZPV curves
show an exponential growth due, at a glance, to a different heat
transfer scheme.

Further work should consider that sapphire have thermal
parameters that are strongly dependent on the temperature [14].
In addition, we did not consider recovery mechanisms as well as
the interfacial losses that seems to play an important role on the
NZP [15,16]. These issues must be taken into account to improve
our model and explore other features related to the NZP.
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cases over different simulations. [adia], [adia-buf] and [fct] correspond to the same
conditions as previously described in Fig. 3. The additional curve [adia-ns]
represents simulations in which no current-sharing between the silver and DyBCO
layers have been set.
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Fig. 6. Two possible mechanisms/schemes for the heat propagation that can
explain the exponential growth of the NZPV curves for current values larger than
1.5Ic . (a) For values below 1.5Ic (red arrows), heat travels mostly along the width of
the tape. (b) For values over 1.5Ic , the contribution of heat generated in the silver
film cannot be neglected, and heat travels mostly along the thickness of the tape
leading to faster velocities. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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pulses [8]. Nevertheless, some simulations have been done to ob-
serve the transport-current dependence of the NZPV. Fig. 5 allows
to observe this dependence for the same geometries and thermal
conditions as in the previous section, i.e. [adia], [adia-buf] and
[fct]. In this figure, we also include simulations for the base case
(without buffer layer and heat exchange), in the hypothetical sce-
nario where no current sharing between the silver and DyBCO lay-
ers is possible i.e. the silver layer acting only as a thermal
resistance [adia-ns]. For these particular simulations we observed
that the current-sharing effect becomes important only around
1.5Ic and above, being more pronounced in the hastelloy case than
in the sapphire case. In fact, it seems that the exchange of current
leads to a reduction of the NZPV due to a reduction of the cross-
sectional resistivity of the silver/normal-DyBCO parallel resistance
that is obviously less important than the normal-DyBCO resistance
alone. This 1.5Ic value correspond to a change in the propagation
scheme for the tapes and leads to an exponential growth of the
NZPV. As a matter of fact, over this threshold value, the power gen-

erated in the silver layer becomes more important and heat start to
travel more from the silver layer than from the DyBCO film by itself
– see Fig. 6. This scheme seems to be responsible of the exponential
growth observed on the NZPV curves – see Fig. 5. Since MgO acts as
an heat barrier along the thickness for the sapphire case, the buffer
layer have a significant effect on the NZPV for this case.

It is also interesting to note that, for both substrate, heat trans-
fer with the nitrogen bath do not seems to have an influence on the
NZP. This seems to be due to the fact that, for a significant sub-
strate thickness (90 lm in this case), heat is more absorbed by
the substrate than exchanged with the surrounding coolant. In that
sense, the adiabatic theory seems to be confirmed for the base case
geometry.

4. Conclusions

The strictly-thermal model developed in this paper is very light
in terms of computation time. It allows to observe important
parameters influencing the NZP by considering the problem from
a pure thermal point of view. With this model, we have shown that
the NZP depends strongly on substrate thermal parameters.

By comparing two substrates of very different properties, i.e.
sapphire and hastelloy, we have demonstrated how sapphire
shows better performance than hastelloy for FCL purposes. Indeed,
sapphire, which is a more diffusive substrate helps to heat and
switch regions of the line adjacent to the normal zone, which avoid
hot-spots formation.

Moreover, the substrate thickness have important effect on the
behavior of CCs. For the sapphire case, the presence of a relatively
thick buffer layer changes considerably the performance of the de-
vice, whereas they are not much altered in the hastelloy case.

Finally, the NZPV dependence on the transport current has been
illustrated. Over a threshold value of around 1.5Ic , the NZPV curves
show an exponential growth due, at a glance, to a different heat
transfer scheme.

Further work should consider that sapphire have thermal
parameters that are strongly dependent on the temperature [14].
In addition, we did not consider recovery mechanisms as well as
the interfacial losses that seems to play an important role on the
NZP [15,16]. These issues must be taken into account to improve
our model and explore other features related to the NZP.
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-  Model: 
-  Mathematical representation of a physical (or other) 

behavior, based on 
-  relevant hypothesis 
-  simplifying assumptions 

-  e.g. Power-law model (PLM) vs. Critical state model (CSM) 
    (one considers flux creep, the other does not) 

-  Numerical method: 
-  Systematic approach to 

-  express models in a discrete form 
-  solve the resulting system of equations 

-  e.g. Finite element method (FEM), point collocation 
method, etc. 
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-  The quality/effectiveness of a model highly relies 
on the “smartness” of the assumptions behind it 

-  Typical considerations: 
-  Necessary to simulate the whole device? 

-  Symmetries/periodicities? 
-  Dimensionality reduction (3D!2D or “2.5D”, etc.)? 

-  What level of accuracy? 
-  Absolute accuracy vs. prediction of trends? 
-  How accurate are experiments anyways? 
-  Needs of industry vs. academics? 
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-  Infinitely thin film approximation 
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Figure 1. Schematic view of the considered thin conductor, which is
assumed to be infinitely long in the z direction. The external field is
applied along the y axis and the current (induced or applied) flows
along the z axis.

section 4 presents the extension of the model to non-uniform
fields; section 5 shows different examples of application of
the generalized model; section 6 contains the summary of this
work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be
considered either infinitely long or with an axial symmetry,
and 2D FEM models considering only the conductor’s cross-
section (where the main currents flow) can therefore be used
to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
nodes is exceedingly large, and even simple cases become
computationally very demanding. As a starting point for
developing our model we considered a thin conductor of
width 2a and thickness d , as schematically shown in figure 1.
Since most applications involve the presence of ac sources,
in the examples we will consider sinusoidal magnetic fields
and currents, although this approach is valid for any type of
waveform. With reference to figure 1, the magnetic field is
applied along the y axis and the current (induced or applied)
flows along the z axis.

In our model, we consider the thin conductor as infinitely
long and characterized by a sheet current density defined as the
current density integrated over the thickness:

Jz(x, t) =
∫ d/2

−d/2
jz(x, y, t) dy. (1)

Since we have in this way eliminated the need for
a detailed mesh of the conductor’s interior, the Maxwell
equations can be substituted by an equivalent 1D formulation
that allows for an effective computation of the sheet current J
on the segment [−a, a]. This means that we assume that the
electromagnetic properties of the conductor do not vary in a
significant way along the thickness and that the conductor can
be effectively treated as a 1D object.

Once the distribution of current density in the thin
conductor is known at each time step, the magnetic
field outside the conductor can be computed by using a
magnetostatic 2D model, which uses the current distribution
computed with the 1D model as the source generating the
field. This method is particularly easy to be implemented in
the Comsol Multiphysics software package [1], which has a
built-in capability of coupling different models and sharing
geometries, variables and functions.

In order to test our model, we compared the results with
those obtained with a 2D FEM model of ours, which has
been thoroughly verified against analytical models as well as
experimental results [2, 3], similarly to other models based on
different implementations that can be found in the literature,
for example [4, 5].

3. Thin conductor in a uniform magnetic field: the
integral equation and its FEM solution

In the case of a conductor not connected to any external circuit
and subjected to a uniform external field, the total induced
current is zero at each time instant. Due to the symmetry of
the problem, the sheet current J has to be an odd function of
x : J (−x) = −J (x), and only half of the geometry needs to be
considered since the centre of the conductor where J (0, t) = 0
can be used as the zero point for the induced voltage V (x, t).

Integrating the Faraday and Ampère laws over the section
of the conductor we find that the equivalent formulation can
be represented by an integral equation whose solution gives
the sheet current Jz as a function of the applied external field
and/or of the transport current. As reported in [6], the integral
equation to be solved is

J (x, t) = µd
ρ

[
Ḣa(t)x + 1

2π

∫ a

0
J̇(u, t) ln

∣∣∣∣
x − u
x + u

∣∣∣∣ du
]

= τ [K (x, t) + Q(x, t)] , (2)

where Ha(t) is the externally (uniform) applied magnetic field,
τ = µd/ρ, and K (x, t) and Q(x, t) are a compact form
of writing the two terms appearing on the right-hand side of
equation (2). The symmetry of the logarithmic kernel with
respect to x reflects the physical symmetry of the problem.

The first term on the right-hand side corresponds to the
current density induced by the external field, whereas the
second term represents the reaction current density generated
by the self-field originating from the eddy currents. At a
given temperature, the electrical resistivity can be constant,
as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–
differential equations, where the differentiation and integration
are made with respect to the same variable. A direct analytical
solution of (2) is problematic because of the presence of
the logarithmic kernel that becomes singular for u = x .
Also the method of the separation of the variables cannot be
applied. In order to obtain approximate solutions, a reliable
numerical scheme is to be devised. This task can be quite
difficult and may involve several ad hoc assumptions. For
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section 4 presents the extension of the model to non-uniform
fields; section 5 shows different examples of application of
the generalized model; section 6 contains the summary of this
work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be
considered either infinitely long or with an axial symmetry,
and 2D FEM models considering only the conductor’s cross-
section (where the main currents flow) can therefore be used
to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
nodes is exceedingly large, and even simple cases become
computationally very demanding. As a starting point for
developing our model we considered a thin conductor of
width 2a and thickness d , as schematically shown in figure 1.
Since most applications involve the presence of ac sources,
in the examples we will consider sinusoidal magnetic fields
and currents, although this approach is valid for any type of
waveform. With reference to figure 1, the magnetic field is
applied along the y axis and the current (induced or applied)
flows along the z axis.

In our model, we consider the thin conductor as infinitely
long and characterized by a sheet current density defined as the
current density integrated over the thickness:

Jz(x, t) =
∫ d/2

−d/2
jz(x, y, t) dy. (1)

Since we have in this way eliminated the need for
a detailed mesh of the conductor’s interior, the Maxwell
equations can be substituted by an equivalent 1D formulation
that allows for an effective computation of the sheet current J
on the segment [−a, a]. This means that we assume that the
electromagnetic properties of the conductor do not vary in a
significant way along the thickness and that the conductor can
be effectively treated as a 1D object.

Once the distribution of current density in the thin
conductor is known at each time step, the magnetic
field outside the conductor can be computed by using a
magnetostatic 2D model, which uses the current distribution
computed with the 1D model as the source generating the
field. This method is particularly easy to be implemented in
the Comsol Multiphysics software package [1], which has a
built-in capability of coupling different models and sharing
geometries, variables and functions.

In order to test our model, we compared the results with
those obtained with a 2D FEM model of ours, which has
been thoroughly verified against analytical models as well as
experimental results [2, 3], similarly to other models based on
different implementations that can be found in the literature,
for example [4, 5].

3. Thin conductor in a uniform magnetic field: the
integral equation and its FEM solution

In the case of a conductor not connected to any external circuit
and subjected to a uniform external field, the total induced
current is zero at each time instant. Due to the symmetry of
the problem, the sheet current J has to be an odd function of
x : J (−x) = −J (x), and only half of the geometry needs to be
considered since the centre of the conductor where J (0, t) = 0
can be used as the zero point for the induced voltage V (x, t).

Integrating the Faraday and Ampère laws over the section
of the conductor we find that the equivalent formulation can
be represented by an integral equation whose solution gives
the sheet current Jz as a function of the applied external field
and/or of the transport current. As reported in [6], the integral
equation to be solved is

J (x, t) = µd
ρ

[
Ḣa(t)x + 1

2π

∫ a

0
J̇(u, t) ln

∣∣∣∣
x − u
x + u

∣∣∣∣ du
]

= τ [K (x, t) + Q(x, t)] , (2)

where Ha(t) is the externally (uniform) applied magnetic field,
τ = µd/ρ, and K (x, t) and Q(x, t) are a compact form
of writing the two terms appearing on the right-hand side of
equation (2). The symmetry of the logarithmic kernel with
respect to x reflects the physical symmetry of the problem.

The first term on the right-hand side corresponds to the
current density induced by the external field, whereas the
second term represents the reaction current density generated
by the self-field originating from the eddy currents. At a
given temperature, the electrical resistivity can be constant,
as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–
differential equations, where the differentiation and integration
are made with respect to the same variable. A direct analytical
solution of (2) is problematic because of the presence of
the logarithmic kernel that becomes singular for u = x .
Also the method of the separation of the variables cannot be
applied. In order to obtain approximate solutions, a reliable
numerical scheme is to be devised. This task can be quite
difficult and may involve several ad hoc assumptions. For
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section 4 presents the extension of the model to non-uniform
fields; section 5 shows different examples of application of
the generalized model; section 6 contains the summary of this
work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be
considered either infinitely long or with an axial symmetry,
and 2D FEM models considering only the conductor’s cross-
section (where the main currents flow) can therefore be used
to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
nodes is exceedingly large, and even simple cases become
computationally very demanding. As a starting point for
developing our model we considered a thin conductor of
width 2a and thickness d , as schematically shown in figure 1.
Since most applications involve the presence of ac sources,
in the examples we will consider sinusoidal magnetic fields
and currents, although this approach is valid for any type of
waveform. With reference to figure 1, the magnetic field is
applied along the y axis and the current (induced or applied)
flows along the z axis.

In our model, we consider the thin conductor as infinitely
long and characterized by a sheet current density defined as the
current density integrated over the thickness:

Jz(x, t) =
∫ d/2

−d/2
jz(x, y, t) dy. (1)

Since we have in this way eliminated the need for
a detailed mesh of the conductor’s interior, the Maxwell
equations can be substituted by an equivalent 1D formulation
that allows for an effective computation of the sheet current J
on the segment [−a, a]. This means that we assume that the
electromagnetic properties of the conductor do not vary in a
significant way along the thickness and that the conductor can
be effectively treated as a 1D object.

Once the distribution of current density in the thin
conductor is known at each time step, the magnetic
field outside the conductor can be computed by using a
magnetostatic 2D model, which uses the current distribution
computed with the 1D model as the source generating the
field. This method is particularly easy to be implemented in
the Comsol Multiphysics software package [1], which has a
built-in capability of coupling different models and sharing
geometries, variables and functions.

In order to test our model, we compared the results with
those obtained with a 2D FEM model of ours, which has
been thoroughly verified against analytical models as well as
experimental results [2, 3], similarly to other models based on
different implementations that can be found in the literature,
for example [4, 5].

3. Thin conductor in a uniform magnetic field: the
integral equation and its FEM solution

In the case of a conductor not connected to any external circuit
and subjected to a uniform external field, the total induced
current is zero at each time instant. Due to the symmetry of
the problem, the sheet current J has to be an odd function of
x : J (−x) = −J (x), and only half of the geometry needs to be
considered since the centre of the conductor where J (0, t) = 0
can be used as the zero point for the induced voltage V (x, t).

Integrating the Faraday and Ampère laws over the section
of the conductor we find that the equivalent formulation can
be represented by an integral equation whose solution gives
the sheet current Jz as a function of the applied external field
and/or of the transport current. As reported in [6], the integral
equation to be solved is

J (x, t) = µd
ρ
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Ḣa(t)x + 1

2π

∫ a
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]

= τ [K (x, t) + Q(x, t)] , (2)

where Ha(t) is the externally (uniform) applied magnetic field,
τ = µd/ρ, and K (x, t) and Q(x, t) are a compact form
of writing the two terms appearing on the right-hand side of
equation (2). The symmetry of the logarithmic kernel with
respect to x reflects the physical symmetry of the problem.

The first term on the right-hand side corresponds to the
current density induced by the external field, whereas the
second term represents the reaction current density generated
by the self-field originating from the eddy currents. At a
given temperature, the electrical resistivity can be constant,
as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–
differential equations, where the differentiation and integration
are made with respect to the same variable. A direct analytical
solution of (2) is problematic because of the presence of
the logarithmic kernel that becomes singular for u = x .
Also the method of the separation of the variables cannot be
applied. In order to obtain approximate solutions, a reliable
numerical scheme is to be devised. This task can be quite
difficult and may involve several ad hoc assumptions. For
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Figure 2. Current density distributions computed for linear and non-linear materials with the developed 1D model (left), compared with 2D
results (right). The applied field is 5 mT with a frequency of 50 Hz. The profiles are taken from t = 0.02 s (corresponding to ωt = 2π) to
t = 0.025 s (corresponding to the peak of the external field at ωt = 5π/2); the arrows indicate the direction of increasing time.

example, in his 1994 paper [6], Brandt replaced the equation
with a system of linear equations referring to a set of nodal
points spaced along the interval [0, a]. In this way the
integral kernel becomes an approximate sum. Nowadays, this
integral equation can be very efficiently converted into an FEM
problem, where the approximation error is better spread over
the domain than with point allocation methods such as above.
The simulated geometry is a properly meshed segment [0, a],
which corresponds to the right-hand half of the conductor’s
width. Equation (2) is directly inserted in the model by means
of extrusion/projection of the variables in order to convert
the integral kernel into a parametric form depending on x .
In general, at the two endpoints, the Neumann conditions
are imposed. In the symmetric case represented by (2), the
current density is null in the centre of the tape; therefore
we can impose the Dirichlet condition J = 0 at x = 0.
Where this symmetry is lacking, as in the examples presented
in the following sections, the Neumann conditions allow for
the required adaptability to integral constraints via Lagrange
multipliers.

In the examples shown in this paper, we considered the
two following cases:

• linear resistivity, ρ = 10−12 $ m;
• non-linear resistivity, ρ = Ec/Jc · |J/Jc|n−1.

For the non-linear resistivity case we considered typical
values for high temperature superconductors: Ec =
10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The
conductor is 3 mm wide and 1 to 10 µm thick. The frequency
of the ac sources (transport current and applied magnetic field)
is 50 Hz.

Figure 2 shows the current density profiles in the right-
hand half of the conductor induced by a sinusoidal field of
amplitude 5 mT. Shown are the profiles obtained with linear
and non-linear resistivity, both compared with the results of
the corresponding 2D model. It can be seen from the figure
that the main effect of the non-linearity of the resistivity is to
force the current distribution near the edge of the conductor.
The results of the 1D model are in very good agreement with
the 2D ones, but they can be obtained in a much shorter time.
The advantage with respect to a standard 2D model becomes
particularly evident when thinner conductors are considered.
It has to be remarked that in the 2D model a coarse mesh
with as little as two elements along the conductor’s thickness
provides acceptable results for the magnetic field profiles but
not for the current density. This is because the magnetic field
components are the state variables of the 2D model and are
therefore directly computed, whereas the current density is
computed by derivation and is consequently very sensible to
the mesh discretization. Similarly to the field profiles, the
ac losses are also usually correctly calculated with a coarse
mesh. The reason is that the most important contribution to the
losses comes from the region near the conductor’s edge where
the superconductor is saturated with a current density slightly
higher than Jc. In contrast, the shape and the smoothness of
the profile with which the current density decreases toward
the centre of the tape depends on the mesh accuracy. For
these reasons, in the case of 2D model, we have compared
two different mesh sizes, using two and four elements along
the conductor’s thickness. The curves shown in figure 2 have
been computed with the finer mesh. Table 1 summarizes the
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example, in his 1994 paper [6], Brandt replaced the equation
with a system of linear equations referring to a set of nodal
points spaced along the interval [0, a]. In this way the
integral kernel becomes an approximate sum. Nowadays, this
integral equation can be very efficiently converted into an FEM
problem, where the approximation error is better spread over
the domain than with point allocation methods such as above.
The simulated geometry is a properly meshed segment [0, a],
which corresponds to the right-hand half of the conductor’s
width. Equation (2) is directly inserted in the model by means
of extrusion/projection of the variables in order to convert
the integral kernel into a parametric form depending on x .
In general, at the two endpoints, the Neumann conditions
are imposed. In the symmetric case represented by (2), the
current density is null in the centre of the tape; therefore
we can impose the Dirichlet condition J = 0 at x = 0.
Where this symmetry is lacking, as in the examples presented
in the following sections, the Neumann conditions allow for
the required adaptability to integral constraints via Lagrange
multipliers.

In the examples shown in this paper, we considered the
two following cases:

• linear resistivity, ρ = 10−12 $ m;
• non-linear resistivity, ρ = Ec/Jc · |J/Jc|n−1.

For the non-linear resistivity case we considered typical
values for high temperature superconductors: Ec =
10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The
conductor is 3 mm wide and 1 to 10 µm thick. The frequency
of the ac sources (transport current and applied magnetic field)
is 50 Hz.

Figure 2 shows the current density profiles in the right-
hand half of the conductor induced by a sinusoidal field of
amplitude 5 mT. Shown are the profiles obtained with linear
and non-linear resistivity, both compared with the results of
the corresponding 2D model. It can be seen from the figure
that the main effect of the non-linearity of the resistivity is to
force the current distribution near the edge of the conductor.
The results of the 1D model are in very good agreement with
the 2D ones, but they can be obtained in a much shorter time.
The advantage with respect to a standard 2D model becomes
particularly evident when thinner conductors are considered.
It has to be remarked that in the 2D model a coarse mesh
with as little as two elements along the conductor’s thickness
provides acceptable results for the magnetic field profiles but
not for the current density. This is because the magnetic field
components are the state variables of the 2D model and are
therefore directly computed, whereas the current density is
computed by derivation and is consequently very sensible to
the mesh discretization. Similarly to the field profiles, the
ac losses are also usually correctly calculated with a coarse
mesh. The reason is that the most important contribution to the
losses comes from the region near the conductor’s edge where
the superconductor is saturated with a current density slightly
higher than Jc. In contrast, the shape and the smoothness of
the profile with which the current density decreases toward
the centre of the tape depends on the mesh accuracy. For
these reasons, in the case of 2D model, we have compared
two different mesh sizes, using two and four elements along
the conductor’s thickness. The curves shown in figure 2 have
been computed with the finer mesh. Table 1 summarizes the
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The advantage with respect to a standard 2D model becomes
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not for the current density. This is because the magnetic field
components are the state variables of the 2D model and are
therefore directly computed, whereas the current density is
computed by derivation and is consequently very sensible to
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the corresponding 2D model. It can be seen from the figure
that the main effect of the non-linearity of the resistivity is to
force the current distribution near the edge of the conductor.
The results of the 1D model are in very good agreement with
the 2D ones, but they can be obtained in a much shorter time.
The advantage with respect to a standard 2D model becomes
particularly evident when thinner conductors are considered.
It has to be remarked that in the 2D model a coarse mesh
with as little as two elements along the conductor’s thickness
provides acceptable results for the magnetic field profiles but
not for the current density. This is because the magnetic field
components are the state variables of the 2D model and are
therefore directly computed, whereas the current density is
computed by derivation and is consequently very sensible to
the mesh discretization. Similarly to the field profiles, the
ac losses are also usually correctly calculated with a coarse
mesh. The reason is that the most important contribution to the
losses comes from the region near the conductor’s edge where
the superconductor is saturated with a current density slightly
higher than Jc. In contrast, the shape and the smoothness of
the profile with which the current density decreases toward
the centre of the tape depends on the mesh accuracy. For
these reasons, in the case of 2D model, we have compared
two different mesh sizes, using two and four elements along
the conductor’s thickness. The curves shown in figure 2 have
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current density is null in the centre of the tape; therefore
we can impose the Dirichlet condition J = 0 at x = 0.
Where this symmetry is lacking, as in the examples presented
in the following sections, the Neumann conditions allow for
the required adaptability to integral constraints via Lagrange
multipliers.

In the examples shown in this paper, we considered the
two following cases:
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• non-linear resistivity, ρ = Ec/Jc · |J/Jc|n−1.
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values for high temperature superconductors: Ec =
10−4 V m−1, Jc between 109 and 1010 A m−2, n = 25. The
conductor is 3 mm wide and 1 to 10 µm thick. The frequency
of the ac sources (transport current and applied magnetic field)
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Figure 2 shows the current density profiles in the right-
hand half of the conductor induced by a sinusoidal field of
amplitude 5 mT. Shown are the profiles obtained with linear
and non-linear resistivity, both compared with the results of
the corresponding 2D model. It can be seen from the figure
that the main effect of the non-linearity of the resistivity is to
force the current distribution near the edge of the conductor.
The results of the 1D model are in very good agreement with
the 2D ones, but they can be obtained in a much shorter time.
The advantage with respect to a standard 2D model becomes
particularly evident when thinner conductors are considered.
It has to be remarked that in the 2D model a coarse mesh
with as little as two elements along the conductor’s thickness
provides acceptable results for the magnetic field profiles but
not for the current density. This is because the magnetic field
components are the state variables of the 2D model and are
therefore directly computed, whereas the current density is
computed by derivation and is consequently very sensible to
the mesh discretization. Similarly to the field profiles, the
ac losses are also usually correctly calculated with a coarse
mesh. The reason is that the most important contribution to the
losses comes from the region near the conductor’s edge where
the superconductor is saturated with a current density slightly
higher than Jc. In contrast, the shape and the smoothness of
the profile with which the current density decreases toward
the centre of the tape depends on the mesh accuracy. For
these reasons, in the case of 2D model, we have compared
two different mesh sizes, using two and four elements along
the conductor’s thickness. The curves shown in figure 2 have
been computed with the finer mesh. Table 1 summarizes the
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Figure 1. Schematic view of the considered thin conductor, which is
assumed to be infinitely long in the z direction. The external field is
applied along the y axis and the current (induced or applied) flows
along the z axis.

section 4 presents the extension of the model to non-uniform
fields; section 5 shows different examples of application of
the generalized model; section 6 contains the summary of this
work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be
considered either infinitely long or with an axial symmetry,
and 2D FEM models considering only the conductor’s cross-
section (where the main currents flow) can therefore be used
to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
nodes is exceedingly large, and even simple cases become
computationally very demanding. As a starting point for
developing our model we considered a thin conductor of
width 2a and thickness d , as schematically shown in figure 1.
Since most applications involve the presence of ac sources,
in the examples we will consider sinusoidal magnetic fields
and currents, although this approach is valid for any type of
waveform. With reference to figure 1, the magnetic field is
applied along the y axis and the current (induced or applied)
flows along the z axis.

In our model, we consider the thin conductor as infinitely
long and characterized by a sheet current density defined as the
current density integrated over the thickness:

Jz(x, t) =
∫ d/2

−d/2
jz(x, y, t) dy. (1)

Since we have in this way eliminated the need for
a detailed mesh of the conductor’s interior, the Maxwell
equations can be substituted by an equivalent 1D formulation
that allows for an effective computation of the sheet current J
on the segment [−a, a]. This means that we assume that the
electromagnetic properties of the conductor do not vary in a
significant way along the thickness and that the conductor can
be effectively treated as a 1D object.

Once the distribution of current density in the thin
conductor is known at each time step, the magnetic
field outside the conductor can be computed by using a
magnetostatic 2D model, which uses the current distribution
computed with the 1D model as the source generating the
field. This method is particularly easy to be implemented in
the Comsol Multiphysics software package [1], which has a
built-in capability of coupling different models and sharing
geometries, variables and functions.

In order to test our model, we compared the results with
those obtained with a 2D FEM model of ours, which has
been thoroughly verified against analytical models as well as
experimental results [2, 3], similarly to other models based on
different implementations that can be found in the literature,
for example [4, 5].

3. Thin conductor in a uniform magnetic field: the
integral equation and its FEM solution

In the case of a conductor not connected to any external circuit
and subjected to a uniform external field, the total induced
current is zero at each time instant. Due to the symmetry of
the problem, the sheet current J has to be an odd function of
x : J (−x) = −J (x), and only half of the geometry needs to be
considered since the centre of the conductor where J (0, t) = 0
can be used as the zero point for the induced voltage V (x, t).

Integrating the Faraday and Ampère laws over the section
of the conductor we find that the equivalent formulation can
be represented by an integral equation whose solution gives
the sheet current Jz as a function of the applied external field
and/or of the transport current. As reported in [6], the integral
equation to be solved is

J (x, t) = µd
ρ

[
Ḣa(t)x + 1

2π

∫ a

0
J̇(u, t) ln

∣∣∣∣
x − u
x + u

∣∣∣∣ du
]

= τ [K (x, t) + Q(x, t)] , (2)

where Ha(t) is the externally (uniform) applied magnetic field,
τ = µd/ρ, and K (x, t) and Q(x, t) are a compact form
of writing the two terms appearing on the right-hand side of
equation (2). The symmetry of the logarithmic kernel with
respect to x reflects the physical symmetry of the problem.

The first term on the right-hand side corresponds to the
current density induced by the external field, whereas the
second term represents the reaction current density generated
by the self-field originating from the eddy currents. At a
given temperature, the electrical resistivity can be constant,
as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–
differential equations, where the differentiation and integration
are made with respect to the same variable. A direct analytical
solution of (2) is problematic because of the presence of
the logarithmic kernel that becomes singular for u = x .
Also the method of the separation of the variables cannot be
applied. In order to obtain approximate solutions, a reliable
numerical scheme is to be devised. This task can be quite
difficult and may involve several ad hoc assumptions. For
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section 4 presents the extension of the model to non-uniform
fields; section 5 shows different examples of application of
the generalized model; section 6 contains the summary of this
work.

2. General description of the 1D model

In most of the cases of practical interest, conductors can be
considered either infinitely long or with an axial symmetry,
and 2D FEM models considering only the conductor’s cross-
section (where the main currents flow) can therefore be used
to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
nodes is exceedingly large, and even simple cases become
computationally very demanding. As a starting point for
developing our model we considered a thin conductor of
width 2a and thickness d , as schematically shown in figure 1.
Since most applications involve the presence of ac sources,
in the examples we will consider sinusoidal magnetic fields
and currents, although this approach is valid for any type of
waveform. With reference to figure 1, the magnetic field is
applied along the y axis and the current (induced or applied)
flows along the z axis.

In our model, we consider the thin conductor as infinitely
long and characterized by a sheet current density defined as the
current density integrated over the thickness:
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∫ d/2

−d/2
jz(x, y, t) dy. (1)

Since we have in this way eliminated the need for
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equations can be substituted by an equivalent 1D formulation
that allows for an effective computation of the sheet current J
on the segment [−a, a]. This means that we assume that the
electromagnetic properties of the conductor do not vary in a
significant way along the thickness and that the conductor can
be effectively treated as a 1D object.

Once the distribution of current density in the thin
conductor is known at each time step, the magnetic
field outside the conductor can be computed by using a
magnetostatic 2D model, which uses the current distribution
computed with the 1D model as the source generating the
field. This method is particularly easy to be implemented in
the Comsol Multiphysics software package [1], which has a
built-in capability of coupling different models and sharing
geometries, variables and functions.

In order to test our model, we compared the results with
those obtained with a 2D FEM model of ours, which has
been thoroughly verified against analytical models as well as
experimental results [2, 3], similarly to other models based on
different implementations that can be found in the literature,
for example [4, 5].

3. Thin conductor in a uniform magnetic field: the
integral equation and its FEM solution

In the case of a conductor not connected to any external circuit
and subjected to a uniform external field, the total induced
current is zero at each time instant. Due to the symmetry of
the problem, the sheet current J has to be an odd function of
x : J (−x) = −J (x), and only half of the geometry needs to be
considered since the centre of the conductor where J (0, t) = 0
can be used as the zero point for the induced voltage V (x, t).

Integrating the Faraday and Ampère laws over the section
of the conductor we find that the equivalent formulation can
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current density induced by the external field, whereas the
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by the self-field originating from the eddy currents. At a
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as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
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to investigate their behaviour. In the case of conductors
with very high aspect ratio, however, the number of mesh
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given temperature, the electrical resistivity can be constant,
as in normal metals, or a function of the current density, as
for example in the power law generally used to describe the
electrical behaviour of superconductors [7].

Equation (2) is not in the most common form of integral–
differential equations, where the differentiation and integration
are made with respect to the same variable. A direct analytical
solution of (2) is problematic because of the presence of
the logarithmic kernel that becomes singular for u = x .
Also the method of the separation of the variables cannot be
applied. In order to obtain approximate solutions, a reliable
numerical scheme is to be devised. This task can be quite
difficult and may involve several ad hoc assumptions. For
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 EXAMPLES OF “SMART” MODELLING APPROACHES 

-  Current homogeneization in coils: classical version 

79

(a) (b)

Figure 3.11: Représentation de la répartition de l’induction magnétique pour deux modèles
de bobine. (a) Bobine réelle, tous les conducteurs sont modélisés (b) Bobine “homogénéisée”.

(a) (b)

Figure 3.12: Représentation du maillage 2-D pour deux modèles de bobines. (a) Bobine réelle,
tous les conducteurs sont modélisés (b) Bobine “homogénéisée”.
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Figure 3.12: Représentation du maillage 2-D pour deux modèles de bobines. (a) Bobine réelle,
tous les conducteurs sont modélisés (b) Bobine “homogénéisée”.

C.-H. Bonnard, Masters thesis, 
École Polytechnique de Montréal, 
October 2012.  
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AC losses in a finite Z stack

D

d

z

x

y

2a

Figure 1. Finite Z stack: a stack of superconducting strips of infinite
length in the y direction, each carrying current I . The overall height
of the stack is 2b.

Figure 2. AC losses in an infinite Z stack, calculated from the
analytic solutions in [6], normalized to the losses in the equivalent
uniform slab, at various current amplitudes I and stack
periodicities D.

for the fields and currents. Both authors noted that in the
limit D ≪ a the solutions approach those for a uniform
infinite slab of width 2a carrying an average current density
I/2aD. In other words, the stack becomes equivalent to
a homogeneous superconducting slab with critical current
density Jc = Ic/2aD, where Ic is the critical current in each
tape. We expect that in practical applications the ratio D/a
will lie in the range 0.01–0.2. In figure 2 we show exact
calculations of the ac losses as in [6], normalized to the ac
losses calculated using the homogeneous approximation, as
a function of D/a. It can be seen that the homogeneous
approximation is reasonably accurate for small D/a and large
I/Ic. Specifically, if we restrict ourselves to currents of
amplitude greater than 0.2Ic, this approximation gives better
than 20% accuracy if D/a < 0.2. From an engineering
perspective this sort of accuracy is usually adequate, especially
since the error is in the right direction (overestimating, rather
than underestimating, the dissipation).

At present there are no analytic solutions available for the
problem of a finite stack of conductors. To initially approach
this problem it makes sense to use an approach that has some

of the features of a homogeneous model. However, our model
must also account, at least approximately, for the screening by
subcritical portions of the superconducting strips. It is likely
that the error in this approach will be similar to that of the
infinite stack; see figure 2. The current density Jy and magnetic
induction B are averaged over a volume D3; that is, we use
only macroscopic values of these quantities. To model the
constraint of constant total current in each tape, we require
that

∫
Jy dx = I/D for all |z| < b. In section 2 we use this

anisotropic homogeneous-medium approximation to calculate
the ac losses of a finite Z stack of superconducting tapes. We
discuss and summarize our results in section 3.

2. Anisotropic homogeneous-medium approximation

We consider a sample initially in the virgin (magnetic-flux-
free) state and examine the initial penetration of magnetic flux
as current is applied in the y direction. We anticipate that,
similar to the case of an infinite slab, we will have a region c <
|x | < a with Jy = Jc. For simplicity, we use the Bean [9, 10]
critical state model, in which Jc is independent of the field.
Unlike the behavior in a homogeneous infinite slab, however,
in principle we should allow for c to vary as a function of z.
Further, we cannot assume that Jy = 0 and B = 0 in the region
|x | < c(z), as is the case for the homogeneous infinite slab. It
is known from studies of the critical state model in an isolated
superconducting strip [11, 12] that no significant amount of
magnetic flux can penetrate subcritical portions of the strip (i.e.
Bz = 0 wherever Jy < Jc); this is also true for each of the
strips in the Z stack. On the other hand, a finite Bx is allowed,
since magnetic flux can thread between the superconducting
layers from the ends of the tapes without fully penetrating any
superconductor. This leads to important constraints on B and
Jy = Jm in the middle region |x | < c(z). Since ∇ · B = 0,
we must have ∂ Bx/∂x = 0, such that Bx depends only on
z. Ampère’s law requires that µ0 Jm = ∂ Bx/∂z − ∂ Bz/∂x .
Since the second term on the right-hand side is zero and the
first depends only on z, we conclude that Jm can depend only
on z. Thus the current density Jy as a function of x has a step-
function character, with the values Jm for |x | < c(z) and Jc

for |x | > c(z). To have a fixed total current in each layer we
require

Jm/Jc = 1 − (a/c)(1 − I/Ic). (1)

For finite values of b, the current density Jc in the region
c < x < a contributes, via the Biot–Savart law, a positive
value of Bz(c, 0), while the current density Jc in the region
−a < x < −c contributes a negative value of smaller
magnitude. In order to make Bz(c, 0) = 0, the current density
in the region −c < x < c must obey Jm > 0, so that it makes
a negative contribution to Bz(c, 0), thereby cancelling the net
positive contribution from the currents in the regions for which
c < |x | < a. Since 0 < Jm < Jc and 0 < c < a, we thus
see that c/a can vary in the range from (1 − I/Ic) to 1. In the
limit as b → ∞, we must find that Jy/Jc → 0 for |x | < c and
that c/a → 1 − I/Ic. The theoretical problem thus reduces
to finding a c(z) that yields macroscopic fields consistent with
the above requirements of the critical state. This means that we
must have a region defined by |x | < c(z) where Bz = 0.

Our primary goal in this paper is to calculate the hysteretic
ac losses in a Z stack. Using the above approach, once we
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 EXAMPLES OF “SMART” MODELLING APPROACHES 

-  Current homogeneization in stacks and coils of 2G HTS tapes 
-  Concept of “anisotropic superconducting bar” for densely packed tapes 

(Analytic solution) 
 

J. R. Clem et al., Supercond. Sci. Tech., 
20 (12), pp. 1130–1139, 2007. 

J=0 

I
coil

=

Z

⌦n

J dS

n constraints 
of the form: 

Supercond. Sci. Technol. 24 (2011) 075012 L Prigozhin and V Sokolovsky

Figure 6. Comparison of solutions for the 20-tape stack and the anisotropic bulk superconductor. Growing transport current, Itr = t ; the Kim
model (H0 = 4, k = 0). Shown for t = 0.5: left—the tape sheet current density J and the rescaled bulk density Dj ; right—the electric field
E . Thick black lines—solution for the stack model; blue lines—the bulk model solution.

Figure 7. Comparison of solutions for the 10-tape stack and the anisotropic bulk models. Growing external field He,z(t) = t , the Kim model
(H0 = 4, k = 1). Shown for t = 1.7 are tape sheet current densities J and the rescaled bulk current density Dj (left); and the electric field E
(right). Thick black lines—solution for the stack model; thin blue lines—the bulk model solution.

rescaled bulk density, j D, especially in the critical current
region, where the losses occur. According to our computations,
for He,z(t) = 2.5 sin(2π t) the losses per period were 5.74 and
5.95 for the stack and bulk models, respectively; the difference
was 3.5%.

As the transport current or external magnetic field grows,
the subcritical zone shrinks. It is interesting to compare the
moving boundary of this zone for stack and bulk models, scaled
appropriately. Although the stacks in two previous examples
(figures 6 and 7), contain a small number of tapes, 20 and 10,
respectively, the subcritical zones in the two models are very
close, see figure 8.

Let us discuss the magnetization example in more detail.
Since we assume that the tapes are infinitely thin, only
variations of the normal-to-tapes field component, He,z(t),
can induce shielding currents and cause losses. The parallel
magnetic field component, He,x(t), may influence only the
critical current density (4) in the Kim model. In the absence
of transport current, the sheet current densities in the tapes are
odd functions; in every tape the condition

∫
Ji (x, t) dx = 0

holds with Ci (t) = 0 (for our choice of the potential Āe).

The situation is similar for the anisotropic bulk model where,
if itr = 0, the condition

∫
j (x, z, t) dx = 0 holds with

C(z, t) = 0. Note that for He,x = 0 and zero transport
current the distribution of current in a usual isotropic bulk
superconductor model should also satisfy this condition due to
symmetry. Hence, the anisotropic bulk superconductor model
yields in this case the same distribution of current density as
the isotropic one. The latter problem has been studied before
(see, e.g., [15, 24]). It is known that while the external field is
not too strong the zero-field zone touches the superconductor
cross-section boundary at two points, (0,±b); it detaches from
the boundary completely as the field grows further. This typical
behavior (see figure 8, right), is not well described by the
solutions [7, 12], being less accurate near the stack top and
bottom and inconvenient, like all front-tracking methods, if the
free boundary topology changes. Note that an adjustment of
the numerical procedure [12] is needed also if the external field
and/or transport current are non-monotone functions of time
(see [13]) because new critical zones appear. Our scheme is
of the free-marching type: it computes the current density, the
critical current zones are then determined as the regions where

10

(Refinement and numerical implementation) 
 

L. Prigozhin and V. Sokolovsky, Supercond. 
Sci. Tech., 24 (7), p. 075012, 2011. 
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-  Hierarchal, 3-D multi-scale tape model for magnets 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 EXAMPLES OF “SMART” MODELLING APPROACHES 

W. K. Chan and J. Schwartz, IEEE T. Appl. Supercon., 22 (5), p. 4706010, 2012. 

CHAN AND SCHWARTZ: ELECTRO–MAGNETO–THERMAL MODEL OF QUENCHING IN REBCO CC-BASED COILS 4706010

design optimization of the magnet, including the design of the
quench protection system.

Common methods for modeling the quench behavior of su-
perconducting magnets include the use of a variety of modeling
techniques, such as analytical equations [25], [26], equivalent
network circuits with lumped elements [33]–[35], homogenized
coil models [36]–[41], and coils that are homogenized at the
conductor level [42]–[46]. A homogenized coil model ignores
the distribution of materials within the conductor and the
magnet by considering only effective homogenized material
properties. A model that homogenizes at the conductor level
preserves the turn-to-turn conductor/insulation geometry but
includes no details of the internal structure of the conductor.
These models are often coupled with electrical circuits to model
the dynamic current and voltage changes during the process of
quench detection and protection. Due to the homogenization,
however, they provide only rough quench information and
cannot evaluate phenomena within the conductor itself.

An experimentally validated model of quenching in a
REBCO CC tape was previously reported [47]. This conductor
model is an accurate micrometer-scale model that uses a mixed-
dimensional modeling approach to address the computational
challenges of modeling a high-aspect-ratio multilayer system.
The model includes all of the thin layers within a CC, including
the REBCO layer and thin silver and buffer interlayers, which
are addressed with 2-D equations and internal 2-D boundary
conditions (BCs). The remaining relatively thick layers, in-
cluding the stabilizer and the substrate, are modeled with 3-D
physics. The interior BCs also couple the 2- and 3-D physics.
The model can calculate the temperature and voltages within
each layer as a function of location and time during a quench
and accurately predicts the quench behavior observed in exper-
iments, including the NZPV and the voltage and temperature
profiles. Because each layer is modeled without any averaging
of material properties, it is easy to model the effects of varia-
tions in architecture on the quench behavior, as reported in [23].

Here, a hierarchical multiscale computationally efficient
model of quenching in REBCO magnets is presented. The
multiscale model uses the previously reported conductor model
as its basic building block. Using the conductor model through-
out an entire magnet, however, would be computationally pro-
hibitive; hence, instead, the multiscale magnet model integrates
the conductor model with a homogenized model of the entire
magnet. Within the homogenized coil framework, one or more
localized micrometer-scale multilayer tape modules are embed-
ded at particular locations of interest. The locations of interest
can be varied to account for location-dependent effects such
as cooling conditions, the dependence of the critical current
density on magnetic field and its orientation, or regions where
larger heat loads are anticipated. For example, one localized
multilayer tape module can be placed at the edge of the coil
and another module at the center of the global homogenized
coil. The multilayer module models a small section of the coil
in detail and is also built using a hierarchical approach by
integrating and coupling multiple single-layer CC tape modules
that analyze the behavior within each layer of the REBCO CC.
The single-layer CC modules are separated by insulation layers
that are also physically modeled.

Fig. 1. Cross-sectional schematic of a typical REBCO CC as used in the
model [47]. Starred layers are thin layers modeled with 2-D physics; all other
layers are modeled in 3-D.

Fig. 2. Schematic showing the cross section of a multilayer tape module
composed of five layers of CC.

Fig. 3. Multiscale coil model composed of a homogenized coil, a copper plate,
and a localized embedded multilayer tape module. The inset shows a section of
the multilayer tape module whose cross section is illustrated in Fig. 2. The
arrow shows the direction of the current flow in each turn. The current outflow
ends of the tapes are located on the symmetry plane. The current inflow ends
are located at the other end of the multilayer tape model. Not shown here is
the air region, which is a half-rectangle enclosing the half-cylinder coil model,
used for the magnetic field calculation.

The hierarchical multiscale approach is illustrated in
Figs. 1–3. Fig. 1 illustrates a cross-sectional schematic of a
typical CC tape model from [47], which is the fundamental
building block used here. These are stacked to create the mul-
tilayer modules as shown in Fig. 2. The multilayer modules are
then embedded in select locations of an otherwise homogenized
coil model as illustrated by the example shown in Fig. 3.
By using this multiscale approach, the coil model generates
detailed quench properties from the micrometer tape-layer scale
to the coil-dimension scale, while ensuring that the coil model
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design optimization of the magnet, including the design of the
quench protection system.

Common methods for modeling the quench behavior of su-
perconducting magnets include the use of a variety of modeling
techniques, such as analytical equations [25], [26], equivalent
network circuits with lumped elements [33]–[35], homogenized
coil models [36]–[41], and coils that are homogenized at the
conductor level [42]–[46]. A homogenized coil model ignores
the distribution of materials within the conductor and the
magnet by considering only effective homogenized material
properties. A model that homogenizes at the conductor level
preserves the turn-to-turn conductor/insulation geometry but
includes no details of the internal structure of the conductor.
These models are often coupled with electrical circuits to model
the dynamic current and voltage changes during the process of
quench detection and protection. Due to the homogenization,
however, they provide only rough quench information and
cannot evaluate phenomena within the conductor itself.

An experimentally validated model of quenching in a
REBCO CC tape was previously reported [47]. This conductor
model is an accurate micrometer-scale model that uses a mixed-
dimensional modeling approach to address the computational
challenges of modeling a high-aspect-ratio multilayer system.
The model includes all of the thin layers within a CC, including
the REBCO layer and thin silver and buffer interlayers, which
are addressed with 2-D equations and internal 2-D boundary
conditions (BCs). The remaining relatively thick layers, in-
cluding the stabilizer and the substrate, are modeled with 3-D
physics. The interior BCs also couple the 2- and 3-D physics.
The model can calculate the temperature and voltages within
each layer as a function of location and time during a quench
and accurately predicts the quench behavior observed in exper-
iments, including the NZPV and the voltage and temperature
profiles. Because each layer is modeled without any averaging
of material properties, it is easy to model the effects of varia-
tions in architecture on the quench behavior, as reported in [23].

Here, a hierarchical multiscale computationally efficient
model of quenching in REBCO magnets is presented. The
multiscale model uses the previously reported conductor model
as its basic building block. Using the conductor model through-
out an entire magnet, however, would be computationally pro-
hibitive; hence, instead, the multiscale magnet model integrates
the conductor model with a homogenized model of the entire
magnet. Within the homogenized coil framework, one or more
localized micrometer-scale multilayer tape modules are embed-
ded at particular locations of interest. The locations of interest
can be varied to account for location-dependent effects such
as cooling conditions, the dependence of the critical current
density on magnetic field and its orientation, or regions where
larger heat loads are anticipated. For example, one localized
multilayer tape module can be placed at the edge of the coil
and another module at the center of the global homogenized
coil. The multilayer module models a small section of the coil
in detail and is also built using a hierarchical approach by
integrating and coupling multiple single-layer CC tape modules
that analyze the behavior within each layer of the REBCO CC.
The single-layer CC modules are separated by insulation layers
that are also physically modeled.

Fig. 1. Cross-sectional schematic of a typical REBCO CC as used in the
model [47]. Starred layers are thin layers modeled with 2-D physics; all other
layers are modeled in 3-D.

Fig. 2. Schematic showing the cross section of a multilayer tape module
composed of five layers of CC.

Fig. 3. Multiscale coil model composed of a homogenized coil, a copper plate,
and a localized embedded multilayer tape module. The inset shows a section of
the multilayer tape module whose cross section is illustrated in Fig. 2. The
arrow shows the direction of the current flow in each turn. The current outflow
ends of the tapes are located on the symmetry plane. The current inflow ends
are located at the other end of the multilayer tape model. Not shown here is
the air region, which is a half-rectangle enclosing the half-cylinder coil model,
used for the magnetic field calculation.

The hierarchical multiscale approach is illustrated in
Figs. 1–3. Fig. 1 illustrates a cross-sectional schematic of a
typical CC tape model from [47], which is the fundamental
building block used here. These are stacked to create the mul-
tilayer modules as shown in Fig. 2. The multilayer modules are
then embedded in select locations of an otherwise homogenized
coil model as illustrated by the example shown in Fig. 3.
By using this multiscale approach, the coil model generates
detailed quench properties from the micrometer tape-layer scale
to the coil-dimension scale, while ensuring that the coil model
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is treated as 2-D BCs as in (14) and (15), since the insulation
is generally electrically insulating, there is no current flowing
within the insulation. Therefore, the normal current fluxes on
the RHS of the BC pair (15) can be set to zero, effectively
turning (15) into electrically insulting BCs. In addition, in
this case, the tangential magnetic field across the insulation
is considered continuous and is enforced on the identity-pair
{Γ−

cu,Γ+
ni} by a field continuity BC as

n × (Hi − Hj)|{Γi, Γj} = 0 (16)

where Hi is the magnetic fields on the boundary Γi.
Finally, a hierarchical multiscale coil model is built by em-

bedding one or more localized multilayer tape modules within
a homogenized coil at locations of interest. Fig. 3 illustrates a
multiscale coil model example with one multilayer tape module
embedded at the center. In this example, five layers of CC
comprise the multilayer tape module, as illustrated in Fig. 2.
More layers can be included to improve accuracy and perform
longer quench simulations for larger normal zone propagation
(with the current-sharing region extended beyond five layers of
tape). The coupling between the multilayer tape module and
the homogenized coil is implemented with the same techniques
used to build the multilayer tape module. The only differences
are that, in (14), (15) and (16), one side of the boundary and
material properties are from the outermost tape surface of the
multilayer tape module, and those on the other side are from the
homogenized coil. The outer electrical and thermal BCs of the
complete coil can be set according to the cooling configuration.

The magnetic field generated by a coil is calculated by
superposing the fields generated by the multilayer module and
the homogenized coil. Since all turns carry the same current, all
single-layer CCs in a multilayer tape module and the homoge-
nized coil carry the same engineering current density. The total
magnetic field is calculated using (8) for the current density on
each individual tape, and (4) and (9) for the homogenized coil
and (5) for the air region. Externally applied magnetic field can
be added as a BC to the air region and coupled to the multilayer
tape module through the field-dependent electrical conductivity
in (13). The air region (not shown in Fig. 3) is not needed for the
electric and thermal physics. More complicated models, such as
a multisectioned coil, can be modularly built by repeating the
same modeling procedure.

III. EXPERIMENTAL VALIDATION OF THE

ELECTRO–THERMAL TAPE MODEL

The 3-D electro–thermal coil model is validated using ex-
perimental data previously generated from quench experiments
on a single pancake REBCO coil [8]. The coil, which is
illustrated in Fig. 5, consists of 97 turns of CC with an inner
diameter of 5.08 cm and is cooled at the bottom via a copper
plate attached to the cold finger of a cryocooler. The rest of
the coil is adiabatic with an initial operating temperature of
50 K. The CC is 4.8 mm wide and includes a 52-µm-thick Cu
stabilizer on the top and bottom, which is bonded to the CC via
solder. More details regarding the REBCO CC are published
in [22]. The CC is wrapped by 50-µm-thick paper insulation.

Fig. 5. Single pancake coil used in the quench experiments. The inset shows
a cutout section of the coil as viewed in an optical microscope to measure the
average thicknesses of the composing layers.

The multiscale coil model is built with the same dimensions
and configuration as the experimental coil, as illustrated in
Fig. 3. Five layers of CC comprise the embedded localized
multilayer tape module, corresponding to turns #58–#62 of
the experimental coil, as schematically shown in Fig. 2. The
average thicknesses and widths of the constituent layers of
the CC and insulation are determined from a cutout section of
the coil shown in Fig. 5. Area fractions of the constituent layers
of the coil, as derived from the measured dimensions, are used
in the equivalent electrical/thermal series [see Fig. 6(a)] and
parallel circuits [see Fig. 6(b)] to estimate the effective trans-
verse and longitudinal electrical/thermal conductivity values of
the homogenized coil. Effective specific heat of the composite
coil is calculated based on area fractions of the constituent ma-
terials. Taking advantage of symmetrical/asymmetrical quench
properties across the center of the heater, only half of the coil,
including the heater, is modeled. Similar to the quench heater
implemented in the experimental coil, the half-length heater
(25 mm long, 2 mm wide, and 0.02 mm thick) is embedded
between turns #59 and #60 (see Fig. 2), starting from the sym-
metry edge (on the symmetry plane shown in Fig. 3). Current
flows from the current inflow end, which is located at the end of
the multilayer tape module inside the homogenized coil, to the
current outflow end, which is located on the symmetry plane, as
illustrated in Fig. 3.

Figs. 7 and 8 compare the longitudinal (parallel to the direc-
tion of current flow) and transverse (radial) NZPVs obtained
from simulations (solid line) and experiments (dashed line) at
50 K for operating current density (Ja) ranging from 50%
to 90% Jc. In each simulation, the same transport current as
in the corresponding experiment is used. For example, in the
Ja = 70% Jc case, the transport current is 162 A. In this case,
the current-sharing temperature Tcs = 61.3 K. Some of the
unknown material properties, such as the electrical and thermal
properties of the solder and paper-type insulation, are estimated
or parameterized. All simulation cases are quenched with the
same quench energy (QE) reported in [8]. The computational
MQEs of the multiscale coil model are not determined, but,
in general, they are smaller than those experimentally deter-
mined because the heater in the model is in perfect contact
with the CC, whereas in the experimental coil, there are large
nonuniform gaps between the heater and the turns. The NZPVs
are computationally determined using the same criteria used
experimentally. The longitudinal NZPV is calculated as the
distance between two voltage taps (10 mm) divided by the
time delay (∆t, see Fig. 9) between V60_3.5−2.5 reaching
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design optimization of the magnet, including the design of the
quench protection system.

Common methods for modeling the quench behavior of su-
perconducting magnets include the use of a variety of modeling
techniques, such as analytical equations [25], [26], equivalent
network circuits with lumped elements [33]–[35], homogenized
coil models [36]–[41], and coils that are homogenized at the
conductor level [42]–[46]. A homogenized coil model ignores
the distribution of materials within the conductor and the
magnet by considering only effective homogenized material
properties. A model that homogenizes at the conductor level
preserves the turn-to-turn conductor/insulation geometry but
includes no details of the internal structure of the conductor.
These models are often coupled with electrical circuits to model
the dynamic current and voltage changes during the process of
quench detection and protection. Due to the homogenization,
however, they provide only rough quench information and
cannot evaluate phenomena within the conductor itself.

An experimentally validated model of quenching in a
REBCO CC tape was previously reported [47]. This conductor
model is an accurate micrometer-scale model that uses a mixed-
dimensional modeling approach to address the computational
challenges of modeling a high-aspect-ratio multilayer system.
The model includes all of the thin layers within a CC, including
the REBCO layer and thin silver and buffer interlayers, which
are addressed with 2-D equations and internal 2-D boundary
conditions (BCs). The remaining relatively thick layers, in-
cluding the stabilizer and the substrate, are modeled with 3-D
physics. The interior BCs also couple the 2- and 3-D physics.
The model can calculate the temperature and voltages within
each layer as a function of location and time during a quench
and accurately predicts the quench behavior observed in exper-
iments, including the NZPV and the voltage and temperature
profiles. Because each layer is modeled without any averaging
of material properties, it is easy to model the effects of varia-
tions in architecture on the quench behavior, as reported in [23].

Here, a hierarchical multiscale computationally efficient
model of quenching in REBCO magnets is presented. The
multiscale model uses the previously reported conductor model
as its basic building block. Using the conductor model through-
out an entire magnet, however, would be computationally pro-
hibitive; hence, instead, the multiscale magnet model integrates
the conductor model with a homogenized model of the entire
magnet. Within the homogenized coil framework, one or more
localized micrometer-scale multilayer tape modules are embed-
ded at particular locations of interest. The locations of interest
can be varied to account for location-dependent effects such
as cooling conditions, the dependence of the critical current
density on magnetic field and its orientation, or regions where
larger heat loads are anticipated. For example, one localized
multilayer tape module can be placed at the edge of the coil
and another module at the center of the global homogenized
coil. The multilayer module models a small section of the coil
in detail and is also built using a hierarchical approach by
integrating and coupling multiple single-layer CC tape modules
that analyze the behavior within each layer of the REBCO CC.
The single-layer CC modules are separated by insulation layers
that are also physically modeled.

Fig. 1. Cross-sectional schematic of a typical REBCO CC as used in the
model [47]. Starred layers are thin layers modeled with 2-D physics; all other
layers are modeled in 3-D.

Fig. 2. Schematic showing the cross section of a multilayer tape module
composed of five layers of CC.

Fig. 3. Multiscale coil model composed of a homogenized coil, a copper plate,
and a localized embedded multilayer tape module. The inset shows a section of
the multilayer tape module whose cross section is illustrated in Fig. 2. The
arrow shows the direction of the current flow in each turn. The current outflow
ends of the tapes are located on the symmetry plane. The current inflow ends
are located at the other end of the multilayer tape model. Not shown here is
the air region, which is a half-rectangle enclosing the half-cylinder coil model,
used for the magnetic field calculation.

The hierarchical multiscale approach is illustrated in
Figs. 1–3. Fig. 1 illustrates a cross-sectional schematic of a
typical CC tape model from [47], which is the fundamental
building block used here. These are stacked to create the mul-
tilayer modules as shown in Fig. 2. The multilayer modules are
then embedded in select locations of an otherwise homogenized
coil model as illustrated by the example shown in Fig. 3.
By using this multiscale approach, the coil model generates
detailed quench properties from the micrometer tape-layer scale
to the coil-dimension scale, while ensuring that the coil model
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Figure 5. Surface of a spiraled coated conductor divided by
triangular elements.

conductors are flat in the lateral direction but bent along the
coated conductor axis. The surface of the coated conductor
in the inner layer is defined using the same algorithm as the
outer layer. In this study we defined the gap between coated
conductors as the space between adjacent coated conductors
measured along the lateral direction of the coated conductor,
as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
√

π2 D2

p2 cos2 ϕ
+ 1

k0 = pw
√

π2 D2 + p2

(7)

where w is the width of the coated conductor and ϕ is given by
the following equation:

ϕ = π

N
− π2 D2

p2
tan ϕ. (8)

3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.
In an infinitely long cable with a spiral structure, the
electromagnetic field is naturally periodic along the cable
axis. The simplest period is the least common multiple of
the spiral pitches in the inner and outer layers. Therefore,
a section of cable with a length equal to the least common
multiple of spiral pitches is sufficient for the calculation of
the entire cable. However, there are shorter periods in a two-
layer cable with a spiral structure. Current distribution in
the coated conductor is determined by the relative position
among the coated conductors. The relative position among
coated conductors in the same layer does not vary along
the coated conductor axis. Thus, in the case of a mono-
layer cable, current distribution is uniform along the coated
conductor axis. A mono-layer cable with a spiral structure
can be analyzed by calculating the current distribution in only
one cable cross section. In a two-layer cable, the influence
of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:
(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of
conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in
section (I).

Figure 7 shows a top view from a radial direction of a two-
layer cable. Clearly, the same relative position is repeated with
a period Lo along the cable axis. The same relative position
appeared in all the coated conductors in the same layer. In
figure 7, sections (I), (II) and (III) have the same current
distribution. Parameters of these periodicities are derived in
the following sections.

3.3.2. The periodicity of the current density distribution along
a coated conductor axis. First, we considered periodicity
along a coated conductor axis. A cross section normal to the
cable axis at x = 0 is shown in figure 8(a) and a cross section
of the other point (x ̸= 0) is shown in figure 8(b). In figure 8,
the x axis is aligned with the cable axis. In figure 8, we focus
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conductors are flat in the lateral direction but bent along the
coated conductor axis. The surface of the coated conductor
in the inner layer is defined using the same algorithm as the
outer layer. In this study we defined the gap between coated
conductors as the space between adjacent coated conductors
measured along the lateral direction of the coated conductor,
as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
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where w is the width of the coated conductor and ϕ is given by
the following equation:
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3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.
In an infinitely long cable with a spiral structure, the
electromagnetic field is naturally periodic along the cable
axis. The simplest period is the least common multiple of
the spiral pitches in the inner and outer layers. Therefore,
a section of cable with a length equal to the least common
multiple of spiral pitches is sufficient for the calculation of
the entire cable. However, there are shorter periods in a two-
layer cable with a spiral structure. Current distribution in
the coated conductor is determined by the relative position
among the coated conductors. The relative position among
coated conductors in the same layer does not vary along
the coated conductor axis. Thus, in the case of a mono-
layer cable, current distribution is uniform along the coated
conductor axis. A mono-layer cable with a spiral structure
can be analyzed by calculating the current distribution in only
one cable cross section. In a two-layer cable, the influence
of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:
(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of
conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in
section (I).

Figure 7 shows a top view from a radial direction of a two-
layer cable. Clearly, the same relative position is repeated with
a period Lo along the cable axis. The same relative position
appeared in all the coated conductors in the same layer. In
figure 7, sections (I), (II) and (III) have the same current
distribution. Parameters of these periodicities are derived in
the following sections.

3.3.2. The periodicity of the current density distribution along
a coated conductor axis. First, we considered periodicity
along a coated conductor axis. A cross section normal to the
cable axis at x = 0 is shown in figure 8(a) and a cross section
of the other point (x ̸= 0) is shown in figure 8(b). In figure 8,
the x axis is aligned with the cable axis. In figure 8, we focus
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Figure 3. Thin strip approximation of the coated conductor; Jx and
Jy are current densities and T is the current vector potential.

follows:

∇ × (ρ∇ × T1) ·n1 + µ0ts
4π

∂

∂ t

×
∑

source points

∫

Se

(∇ × T2) × r · n2

r 3
dS = 0. (2)

Here, T1 and T2 are the current vector potentials at the field
point and source point of the self-magnetic field, respectively;
n1 and n2 are the normal vectors of the conductor’s wide face
at the field point and source point, respectively; r is the vector
from the source point to the field point; ρ is the resistivity
and ts is the thickness of the superconductor layer in coated
conductors. To calculate (2), we considered two coordinate
systems: (x1, y1, z1), which is fixed at the section of each
field point (the unit vectors in the x1, y1 and z1 directions are
i1, j1 and k1, respectively); and (x2, y2, z2), which is fixed
at the element of the source point (the unit vectors in the x2,
y2 and z2 directions are i2, j2 and k2, respectively). The
vectors k1 and k2 are normal to the conductor’s wide face of
the field point and source point, respectively. Since the current
density component normal to the wide face of the conductor is
neglected, only the magnetic field component normal to the
wide face is considered. Thus, T has a component normal
to the conductor’s wide face alone, as shown in figure 3.
Therefore, the problem is reduced to two dimensions. The
scalar variable T on a plane parallel to the coated conductor’s
wide face is

∂

∂x1

(
ρ

∂T1

∂x1

)
+ ∂

∂y1

(
ρ

∂T1

∂y1

)
+ µ0ts

4π

∂

∂ t

×
∑

source point e

∫

Se

αe

r 3
dS = 0 (3)

where αe is derived as follows:

αe =
(

∂T2

∂y2
i2 − ∂T2

∂x2
j2

)
· (r × k1). (4)

The superconducting property is given by the power law
characteristic:

E = E0

(
J
Jc

)n

(5)

where n is fixed at 30 and E0 is fixed at 10−4 V m−1. The
equivalent resistivity of the coated conductor ρ is then derived
from the following equation: ρ = E/J . Constitutive equation
was given by Ohm’s law using the equivalent resistivity.
Equation (3) was discretized by Galerkin’s method using a
linear interpolation formula and solved using the constitutive
equation.

Figure 4. Orbit of coated conductors with a spiral structure in a
two-layer cable.

3.2. The spiral structure of a two-layer cable

The spiral structure of a two-layer cable is represented by spiral
pitches of the inner and outer layers pi and po(pi > po),
numbers of coated conductors in the inner and outer layers Ni

and No (No > Ni), and diameters of the inner and outer layers
Di and Do(Do > Di).

First, we defined the curved centerline of the coated
conductor in a cable. The centerline is parameterized using
the real number u and positive integer m (1 ! m ! Ni or No):

x = u y = D
2

cos
(

2πu
p

+ 2πm
N

)

z = D
2

sin
(

2πu
p

+ 2πm
N

) (6)

where p = pi or po, N = Ni or No and D = Di or Do. The
x axis is similarly oriented to the cable axis. The cable cross
section is on the y–z plane. The defined curved centerlines are
shown in figure 4.

Second, the surface of the coated conductor in the outer
layer was then defined as follows. Figure 5 illustrates short
sections of the wide face of coated conductors in the inner
and outer layers of the cable. We defined a straight lateral
line segment on the coated conductor (shown in figure 5) as a
line segment normal to the curved centerline and tangent to the
outer cylinder. This cylinder is defined as the cylinder whose
central axis aligns to the x axis and whose diameter is the same
as the diameter of the spiral structure. The lengths of the line
segments equal the width of the coated conductor. These line
segments are always straight, but their orientations rotate with
the coated conductor axis. The space between adjacent lateral
lines is divided by triangular elements, which make up the wide
face of the coated conductor, as shown in figure 5. Coated
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Figure 1. Schematics of analysis region of the two-layer cable:
(a) 2D model (on plane) and (b) 3D model (in box).

analysis performed on a cross section of the cable [7–11],
as shown in figure 1(a). Furthermore, theoretical equations
have been derived [12, 13]. However, these methods are
aimed at analyzing straight-coated conductors along their axes
and only take into consideration the geometry of the cross
section; the current density component parallel to the cross
section is neglected. Thus, while performing 2D analysis
or theoretical equations [14], the ac losses of cables with
structures such as spiral structures along their axis can be
calculated only approximately. There are some reports of
ac losses in cables that are composed of BISCCO tapes and
have spiral structures [15–17]. In these reports, a layer
composed of BISSCO tapes is approximated by a cylindrical
shell, and the gaps between BSCCO tapes are neglected.
In general, a large circumferential component of magnetic
flux density parallel to the conductor face is generated in
the cable. The ac loss of thick BISSCO tapes in the cable
is dominated by the circumferential magnetic flux density
component penetrating from the tape face, and the influence
of the normal magnetic flux density component is negligible.
Therefore, the cylindrical shell approximation is effective
when analyzing the BSCCO cable. However, since the
thickness of the superconductor layer in a coated conductor
is considerably less than the width, the ac loss in the coated
conductor is dominated by the magnetic flux density normal to
the conductor face, and the angular geometry effect and the gap
effect in the cables (explained in the following section) are not
negligible. As far as the mono-layer cable composed of coated
conductors, ac loss was numerically calculated considering the
spiral structure, gap effect and angular geometry effect [18].
However, in principle, this method cannot calculate the ac loss
of multi-layer cables in which each layer has different spiral
pitch. With this background, the objective of this study is as
follows:

(1) To develop 3D analysis of a two-layer cable considering
both the spiral structure and the gap effect, as shown in
figure 1(b).

(2) To determine the current density distribution and the ac
loss distribution along the cable axis.

In section 2, the mechanisms for generating a normal
magnetic flux density component in two-layer cables is
described. In section 3, 3D modeling of a two-layer cable
with a spiral structure is described. In section 4, specifications
of the two-layer cables are given, and the results of the

Table 1. The influence of magnetic flux density components on the
ac loss of the inner and outer layers.

Self-magnetic
flux

External magnetic flux

Inner layer Axial and
circumferential
component

Axial component
generated by outer
layer

Outer layer Circumferential
component generated
by inner layer

electromagnetic field analysis using the developed model in
this paper are described. The conclusions are given in
section 5.

2. The mechanisms for generating a normal magnetic
flux density component in a two-layer cable with a
spiral structure

2.1. Circumferential and axial components of magnetic flux
density in the cable with a spiral structure

In the cable with a spiral structure, magnetic flux density
contains a circumferential component Bθ and an axial
component Ba. Bθ surrounds the surface of the layer, while
Ba is parallel to the cable axis and flows inside the layer.
Coated conductors in the inner layer are exposed to a self-
magnetic flux density, which consists of Bθ and Ba generated
by currents in the inner layer, and an external magnetic
flux density which consists of Ba generated by currents in
the outer layer. In the outer layer coated conductors are
exposed to the self-magnetic flux density, which consists of
Bθ and Ba generated by currents in the outer layer, and the
external magnetic flux density which consists of Bθ generated
by currents in the inner layer. These magnetic flux density
components are summarized in table 1. In the following
sections, factors influencing the self-and external magnetic flux
density components are considered individually. It should
be noted that ac losses in coated conductors are generated
predominantly by the magnetic flux density component normal
to the superconductor layer. This is because the ac loss
generated by the magnetic flux density component parallel to
the conductor’s extremely thin superconductor layer is very
small. Therefore, the mechanism of the generation of the
normal magnetic flux density component, which dominates the
ac loss of coated conductors, is considered in the following
sections. It should be noted that the explanation of the
penetration process of the magnetic flux into a superconductor
is not the intention.

2.2. The effect of self-magnetic flux density on ac loss

Generation of the normal magnetic flux density component
from the self-magnetic flux density is attributed to two effects:
the gap effect and the angular geometry effect (the angular
geometry effect is similar to the polygonal effect [19]).
Self-magnetic fluxes surrounding a layer circumferentially
(circumferential magnetic flux) and penetrating inside the

2

Surfaces (2-D) 
in 3-D space 

Frederic Sirois
EEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Frederic Sirois
Invited presentation 4M-LS-I1 at EUCAS 2013



© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 
© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 23 

-  3-D modelling of 2-layer cables using a “2.5-D” model 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 EXAMPLES OF “SMART” MODELLING APPROACHES 

K. Takeuchi, N. Amemiya et al., Supercond. Sci. Tech., 24 (8), p. 119501, 2011. 

Supercond. Sci. Technol. 24 (2011) 085014 K Takeuchi et al

Figure 5. Surface of a spiraled coated conductor divided by
triangular elements.

conductors are flat in the lateral direction but bent along the
coated conductor axis. The surface of the coated conductor
in the inner layer is defined using the same algorithm as the
outer layer. In this study we defined the gap between coated
conductors as the space between adjacent coated conductors
measured along the lateral direction of the coated conductor,
as shown in figure 6. The gap g is derived as follows:

g = |D sin ϕ − k0 cos ϕ|
√

π2 D2

p2 cos2 ϕ
+ 1

k0 = pw
√

π2 D2 + p2

(7)

where w is the width of the coated conductor and ϕ is given by
the following equation:

ϕ = π

N
− π2 D2

p2
tan ϕ. (8)

3.3. Reduction of analysis region

3.3.1. Current density distribution in the coated conductor.
In an infinitely long cable with a spiral structure, the
electromagnetic field is naturally periodic along the cable
axis. The simplest period is the least common multiple of
the spiral pitches in the inner and outer layers. Therefore,
a section of cable with a length equal to the least common
multiple of spiral pitches is sufficient for the calculation of
the entire cable. However, there are shorter periods in a two-
layer cable with a spiral structure. Current distribution in
the coated conductor is determined by the relative position
among the coated conductors. The relative position among
coated conductors in the same layer does not vary along
the coated conductor axis. Thus, in the case of a mono-
layer cable, current distribution is uniform along the coated
conductor axis. A mono-layer cable with a spiral structure
can be analyzed by calculating the current distribution in only
one cable cross section. In a two-layer cable, the influence
of coated conductors in another layer has to be considered.

Figure 6. Definition of the gap between adjacent coated conductors:
(a) a view from the radial direction of the cable and (b) a cross
section normal to the cable axis.

Figure 7. The distributions of the current vector potential of
conductors in the outer layer; the dots in section (II) and stripes in
section (III) are equal to the distribution of the shadow pattern in
section (I).

Figure 7 shows a top view from a radial direction of a two-
layer cable. Clearly, the same relative position is repeated with
a period Lo along the cable axis. The same relative position
appeared in all the coated conductors in the same layer. In
figure 7, sections (I), (II) and (III) have the same current
distribution. Parameters of these periodicities are derived in
the following sections.

3.3.2. The periodicity of the current density distribution along
a coated conductor axis. First, we considered periodicity
along a coated conductor axis. A cross section normal to the
cable axis at x = 0 is shown in figure 8(a) and a cross section
of the other point (x ̸= 0) is shown in figure 8(b). In figure 8,
the x axis is aligned with the cable axis. In figure 8, we focus
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Figure 3. Thin strip approximation of the coated conductor; Jx and
Jy are current densities and T is the current vector potential.

follows:

∇ × (ρ∇ × T1) ·n1 + µ0ts
4π

∂

∂ t

×
∑

source points

∫

Se

(∇ × T2) × r · n2

r 3
dS = 0. (2)

Here, T1 and T2 are the current vector potentials at the field
point and source point of the self-magnetic field, respectively;
n1 and n2 are the normal vectors of the conductor’s wide face
at the field point and source point, respectively; r is the vector
from the source point to the field point; ρ is the resistivity
and ts is the thickness of the superconductor layer in coated
conductors. To calculate (2), we considered two coordinate
systems: (x1, y1, z1), which is fixed at the section of each
field point (the unit vectors in the x1, y1 and z1 directions are
i1, j1 and k1, respectively); and (x2, y2, z2), which is fixed
at the element of the source point (the unit vectors in the x2,
y2 and z2 directions are i2, j2 and k2, respectively). The
vectors k1 and k2 are normal to the conductor’s wide face of
the field point and source point, respectively. Since the current
density component normal to the wide face of the conductor is
neglected, only the magnetic field component normal to the
wide face is considered. Thus, T has a component normal
to the conductor’s wide face alone, as shown in figure 3.
Therefore, the problem is reduced to two dimensions. The
scalar variable T on a plane parallel to the coated conductor’s
wide face is

∂

∂x1

(
ρ

∂T1

∂x1

)
+ ∂

∂y1

(
ρ

∂T1

∂y1

)
+ µ0ts

4π

∂

∂ t

×
∑

source point e

∫

Se

αe

r 3
dS = 0 (3)

where αe is derived as follows:

αe =
(

∂T2

∂y2
i2 − ∂T2

∂x2
j2

)
· (r × k1). (4)

The superconducting property is given by the power law
characteristic:

E = E0

(
J
Jc

)n

(5)

where n is fixed at 30 and E0 is fixed at 10−4 V m−1. The
equivalent resistivity of the coated conductor ρ is then derived
from the following equation: ρ = E/J . Constitutive equation
was given by Ohm’s law using the equivalent resistivity.
Equation (3) was discretized by Galerkin’s method using a
linear interpolation formula and solved using the constitutive
equation.

Figure 4. Orbit of coated conductors with a spiral structure in a
two-layer cable.

3.2. The spiral structure of a two-layer cable

The spiral structure of a two-layer cable is represented by spiral
pitches of the inner and outer layers pi and po(pi > po),
numbers of coated conductors in the inner and outer layers Ni

and No (No > Ni), and diameters of the inner and outer layers
Di and Do(Do > Di).

First, we defined the curved centerline of the coated
conductor in a cable. The centerline is parameterized using
the real number u and positive integer m (1 ! m ! Ni or No):

x = u y = D
2

cos
(

2πu
p

+ 2πm
N

)

z = D
2

sin
(

2πu
p

+ 2πm
N

) (6)

where p = pi or po, N = Ni or No and D = Di or Do. The
x axis is similarly oriented to the cable axis. The cable cross
section is on the y–z plane. The defined curved centerlines are
shown in figure 4.

Second, the surface of the coated conductor in the outer
layer was then defined as follows. Figure 5 illustrates short
sections of the wide face of coated conductors in the inner
and outer layers of the cable. We defined a straight lateral
line segment on the coated conductor (shown in figure 5) as a
line segment normal to the curved centerline and tangent to the
outer cylinder. This cylinder is defined as the cylinder whose
central axis aligns to the x axis and whose diameter is the same
as the diameter of the spiral structure. The lengths of the line
segments equal the width of the coated conductor. These line
segments are always straight, but their orientations rotate with
the coated conductor axis. The space between adjacent lateral
lines is divided by triangular elements, which make up the wide
face of the coated conductor, as shown in figure 5. Coated
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Figure 14. Distributions of current line in the inner and outer layers
of cable F.

Figure 17 shows the ac loss power density distributions
along the coated conductor axis of case 2. In addition, the ac
loss power density in the coated conductor at a corresponding
relative position calculated by the 2D model is indicated. The
corresponding relative position in the 3D and 2D models are
defined as follows. When we focused on a coated conductor
in a cable with a spiral structure, the relative position among
coated conductors varied along the cable axis, as shown in
figure 10(a). However, when we focus on a cross section in
the cable, the relative position varies along the circumferential
direction. This is due to the numbers of coated conductors in
the inner and outer layers being different (17/18) as shown in
figure 10(b). A position marked ‘1’ in figure 10(a) corresponds
to a position marked ‘1’ in figure 10(b). AC loss power
density varies along the coated conductor axis due to the
current density distribution along the axis. In a tape-on-tape
cross section, where coated conductors in the inner and outer

Figure 15. Time variation of the normal magnetic flux density
component (dBn/dt) in coated conductors. (a) Coated conductor in
the inner layer and (b) coated conductor in the outer layer.

layers are set parallel to each other, ac loss is small because
magnetic flux can flow parallel, comparatively speaking, to
the coated conductor face. However, in a tape-on-gap cross
section, where coated conductors in the inner and outer layers
are not set parallel, a normal magnetic flux density component
is generated naturally, and ac loss is large.

In cables such as H with a long spiral pitch, the ac loss
power density in coated conductors calculated by the 2D model
is close to that calculated by the 3D model. Since our models
consisted of 17 coated conductors in the inner layer and 18
coated conductors in the outer layer, a cross section includes
various relative positions such as tape-on-tape and tape-on-gap.
Thus, we can sum the ac losses of all coated conductors in
the 2D model, thereby allowing the calculation of the average
ac loss of the entire cable. In the cables with a long spiral
pitch, ac losses in the inner and outer layers and in the entire
cable as calculated by the 2D model, are shown in table 5.
These figures almost agree with the ac losses calculated by
the 3D model. However, in cables with a short spiral pitch
ac loss cannot be calculated correctly by the 2D model. This is
due to the large differences between the ac loss power density
distributions calculated by the two models.

4.2.5. Validity of the model. The ac losses calculated by using
the developed 3D model were compared with the measured
ac losses for a two-layer cable. The calculated ac losses
agreed reasonably with the measured ac losses. However, a
conventional 2D model could be applied reasonably to the
cable due to its long spiral pitch. Such comparisons for a cable
with a short spiral pitch are expected in future.

5. Conclusion

By considering the periodicity of the current density
distribution along the axis of the coated conductor and
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Figure 14. Distributions of current line in the inner and outer layers
of cable F.

Figure 17 shows the ac loss power density distributions
along the coated conductor axis of case 2. In addition, the ac
loss power density in the coated conductor at a corresponding
relative position calculated by the 2D model is indicated. The
corresponding relative position in the 3D and 2D models are
defined as follows. When we focused on a coated conductor
in a cable with a spiral structure, the relative position among
coated conductors varied along the cable axis, as shown in
figure 10(a). However, when we focus on a cross section in
the cable, the relative position varies along the circumferential
direction. This is due to the numbers of coated conductors in
the inner and outer layers being different (17/18) as shown in
figure 10(b). A position marked ‘1’ in figure 10(a) corresponds
to a position marked ‘1’ in figure 10(b). AC loss power
density varies along the coated conductor axis due to the
current density distribution along the axis. In a tape-on-tape
cross section, where coated conductors in the inner and outer

Figure 15. Time variation of the normal magnetic flux density
component (dBn/dt) in coated conductors. (a) Coated conductor in
the inner layer and (b) coated conductor in the outer layer.

layers are set parallel to each other, ac loss is small because
magnetic flux can flow parallel, comparatively speaking, to
the coated conductor face. However, in a tape-on-gap cross
section, where coated conductors in the inner and outer layers
are not set parallel, a normal magnetic flux density component
is generated naturally, and ac loss is large.

In cables such as H with a long spiral pitch, the ac loss
power density in coated conductors calculated by the 2D model
is close to that calculated by the 3D model. Since our models
consisted of 17 coated conductors in the inner layer and 18
coated conductors in the outer layer, a cross section includes
various relative positions such as tape-on-tape and tape-on-gap.
Thus, we can sum the ac losses of all coated conductors in
the 2D model, thereby allowing the calculation of the average
ac loss of the entire cable. In the cables with a long spiral
pitch, ac losses in the inner and outer layers and in the entire
cable as calculated by the 2D model, are shown in table 5.
These figures almost agree with the ac losses calculated by
the 3D model. However, in cables with a short spiral pitch
ac loss cannot be calculated correctly by the 2D model. This is
due to the large differences between the ac loss power density
distributions calculated by the two models.

4.2.5. Validity of the model. The ac losses calculated by using
the developed 3D model were compared with the measured
ac losses for a two-layer cable. The calculated ac losses
agreed reasonably with the measured ac losses. However, a
conventional 2D model could be applied reasonably to the
cable due to its long spiral pitch. Such comparisons for a cable
with a short spiral pitch are expected in future.

5. Conclusion

By considering the periodicity of the current density
distribution along the axis of the coated conductor and
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-  Models are expressed as equations 
-  Ordinary and/or partial differential equations       

(ODEs / PDEs) 
-  Integral equations (IEs) 
-  Mixture of PDEs and IEs 
-  Algebraic constraints 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 MODELS AND TYPES OF EQUATIONS 

SIROIS et al.: PERFORMANCES OF METHOD FOR COMPUTING CURRENT DISTRIBUTIONS 3603

Fig. 3. Comparison of computation times of the SAM and the FEM for
and as a function of the number of mesh elements in the conducting
domains.

(includes the silver sheath contribution). In all simulations that
follow, the total current applied in the tape is .

B. Computation Time vs Number of Elements

The first run of simulations was performed for a varying
number of elements (the mesh was successively refined), and
for two different values (4 and 25). These simulations were
intended to update the results previously obtained in [8] for the
non-optimized SAM code.

The computation times obtained are presented in Fig. 3.
We first remark that the value used does not affect the
general growth of computation time with increasing number
of elements, and that the SAM computation times grow much
quicker than the FEM ones, as expected for integral methods
because matrices are full rather than sparse. Nevertheless, the
SAM is still faster than the FEM for problems containing less
than 850–900 elements in the tape region (this does not count
the elements required to mesh the air with the FEM method),
independently of the value. It is even 10 times faster than
our most optimized FEM formulation for 300 elements. These
are the main results of this paper, and provide us with a solid
reference point for deciding whether the SAM is a good choice
or not for a particular problem.

Note that we should normally perform this comparison by
plotting the computation time as a function of the number of
DOFs in the problem, but since both the SAM and the FEM
use first order approximating functions in the HTS tape domain,
the number of DOFs are almost proportional to the number of
elements, and the conclusion remains the same in this case.

C. Computation Time vs Value

The second run of simulation was perform with a fixed
number of elements in the tape mesh (824 elements, 683
DOFs), but varying values. This corresponds to a case where
SAM and FEM computation times are similar. The results are
presented in Fig. 4.

In this figure, we observe that the effect of increasing the
value on computation time is roughly the same for both

methods, which is consistent with the fact that the same solver

Fig. 4. Comparison of computation times of the SAM and the FEM for 824
mesh elements in the tape mesh (683 DOFs) as a function of the value.

(DASPK) is used in both cases. Nevertheless, the SAM seems
to behave slightly better at high values. There is not much
to do to improve this behavior, but we should remind that, for
given mesh and numerical tolerance, the computation time is
roughly proportional to the value.

V. CONCLUSION

This paper presented comparisons of computation times
between two relatively mature and optimized numerical tech-
niques for computing the electromagnetic behavior of HTS
materials, i.e. the semi-analytical method (SAM) and the finite
element method (FEM). Details about both techniques were
already published elsewhere [4], [5], but the new major conclu-
sions brought by this paper are:

• For the same solver used (DASPK), the SAM is faster than
the FEM when the number of elements in the conducting
regions is less than 850–900

• For a given mesh and numerical tolerance, the length of
the simulation is approximately proportional to the value
(i.e. if doubles, the computation time doubles)

In its current form, the SAM is ready to be used in appli-
cations requiring repeated or multiple calls to the solver, such
as characterization of HTS materials by solving an inverse
problem, or optimization of HTS materials shape. It is perfectly
suited to simulation in bulk materials and strips in which the
aspect ratio is not too large.

Further works on the SAM could include a “thin film” ver-
sion of the SAM for coated conductors (in continuity of the work
published in [6]), and the development of a diagonal approxima-
tion of the (full) SAM Jacobian matrix to further increase solu-
tion speed. The latter aims to reduce the exponent by ap-
proximately 1, which should make it possible to raise the break
even point with the FEM to above 2000 elements in the con-
ducting domains.
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Number of DOFs in conducting regions 

PDEs 
IEs 

F. Sirois et al. IEEE T. Appl. Supercon., 19 (3), pp. 3600–3604, 2009. 

-  IEs vs. PDEs 
-  No mesh in air regions 
    (no boundary conditions) 
-  But FULL matrices 

-  Computation time grows quickly 
-  Numerically efficient for small number of DOFs 
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-  Many possible choice of variables (“formulation”) 
-  Field variables (H,E) vs. potentials (A-V, T-Ω, etc.) 

-  More intuitive 
-  Less DOFS in conducting regions (but more elsewhere) 
-  More difficult to couple with electric circuits 
-  More difficult to extract some global quantities 

-  Inductances, flux linkage, etc. 

-  Some models more naturally expressed in a specific 
formulation 
-  e.g. force-displacement method: A-V  (Campbell, 2007) 

-  Not discussed any further here 
-  too involved for the time allocated 
-  no systematic benchmarking seems to exist 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 MODELS AND CHOICE OF “FORMULATION” 
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-  Model: 
-  Mathematical representation of a physical (or other) 

behavior, based on 
-  relevant hypothesis 
-  simplifying assumptions 

-  e.g. Power-law model (PLM) vs. Critical state model (CSM) 
    (one considers flux creep, the other does not) 

-  Numerical method: 
-  Systematic approach to 

-  express models in a discrete form 
-  solve the resulting system of equations 

-  e.g. Finite element method (FEM), point collocation 
method, etc. 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 MODEL VS. NUMERICAL METHOD 

Reminder… 
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-  A given model can be solved by different 
numerical methods 
-  Models and numerical methods are in theory independent 
-  Some numerical methods are more suitable than others 

for a particular model 

-  Computational performances depends on a proper 
choice both for 
-  the model: compromise between accuracy and complexity 
    (includes materials modelling) 
-  the numerical method 

-  Model + Numerical method = Numerical model 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 MODEL VS. NUMERICAL METHOD 
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 NUMERICAL METHODS 

-  Numerical methods are numerous 
-  Finite element method (FEM), finite difference method, 

finite volume method, point collocation method, etc. 
-  Each method splits into many variants 

-  Common features of numerical methods 
-  Apply to a discretized version of the model 
-  Quality of approximation: function of discretization 

-  notion of degrees of freedom – DOFs 
-  Computation times grow with the number of DOFs 

-  A suitable numerical method should 
-  Maximize accuracy for a given number of DOFs 

Obtain a discrete approximation that is as close as possible to the 
intrinsic accuracy of the model 
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 ACCURACY OF EXISTING NUMERICAL MODELS 

  Lateral variation of Jc               Angular dependence Jc(B,θ) 

F. Gömöry et al., IEEE TAS, 23 (3), 
p. 5900406, 2013. 
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 ACCURACY OF EXISTING NUMERICAL MODELS 

F. Gömöry et al., IEEE TAS, 23 (3), p. 5900406, 2013. 

    AC losses in coils using realistic tape models 
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Roebel pancake coil: 
- HTS modelled in 2-D (axisymmetric), copper contact in 3-D 
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F. Grilli et al., IEEE TAS, at press, 2014. 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 ACCURACY OF EXISTING NUMERICAL MODELS 
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 CC tapes with Ni-W substrate            Ni-shielding of CC tapes 
(ferromagnetic substrate)     (symbols = experiments) 
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2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 ACCURACY OF EXISTING NUMERICAL MODELS 

D. N. Nguyen et al., Supercond. Sci. Tech., 
23 (2), p. 025001, 2010. 
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-  Computational performances for simulating a realistic 
HTS problem (e.g. AC losses vs. transport current) are in 
the range of: 

 
   * Based on the use of the FEM 

-  Computation times are: 
-  Acceptable for trying to understand what happens 
-  Still too long for optimization of devices      

(hundreds or thousands of repetitions) 

Dimension Typical # of DOFs* Typical solution time 

2-D 1000 to X00,000 Minutes to hours 
3-D 100,000 to X,000,000 Hours to days 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 TYPICAL COMPUTATIONAL PERFORMANCES 

Frederic Sirois
EEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Frederic Sirois
Invited presentation 4M-LS-I1 at EUCAS 2013



© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 
© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 34 

-  Where do we find simulators for HTS devices? 
-  Home made proprietary codes 
-  Commercial codes (COMSOL, FLUX, ANSYS, JMAG, 

MagNet, FlexPDE, etc.) 

 
-  Where do we find model files? 

-  Everybody has to create his/her own models 
-  No file template is publicly available for physical 

models 
-  No library of “HTS devices” exists in power system 

simulators 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 AVAILABILITY OF NUMERICAL TOOLS AND MODELS 
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-  At present: 
-  Hard to find model templates 
-  Poor documentation and availability of home made codes 
-  High cost of commercial software licences 
-  Long calculation times, not suitable for device optimization 

-  This leads to a substantial bottleneck: 
-  HTS modelling remains a specialized topic, mostly accessible 

to graduate students or researchers 
-  HTS devices remains an obscure object for most 

manufacturers and power utilities 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 AVAILABILITY OF NUMERICAL TOOLS AND MODELS 

Frederic Sirois
EEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Frederic Sirois
Invited presentation 4M-LS-I1 at EUCAS 2013



© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 
© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 36 

-  So, what is the status of HTS numerical modelling? 
-  In terms of capabilities and accuracy: 

-  Relatively mature and proven 
-  In terms of computational performances (speed): 

-  For a single device: acceptable in 2D, less in 3D 
-  For device optimization: not fast enough 

-  In terms of availability of model files: 
-  Physical models: not so easily available 
-  Macroscopic models: even less available 

-  In terms of easiness-of-use: 
-  No modelling environment can be said “easy-to-use” 

 
-  What could/should be improved then? 

Performance of 
numerical methods 

Availability and 
easiness-of-use 

2) OVERVIEW OF MODELS AND NUMERICAL METHODS 
 

 SUMMARY 
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PRESENTATION OUTLINE 

1)  Context and need for numerical modelling 

2)  Overview of models and numerical methods 

3)  Paths towards improvement 

4)  Conclusion 
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-  Two parallel paths to pursue: 
     (besides improvement of the models themselves) 

1)  Performance of numerical methods 

 
2)  Availability and easiness-of-use of simulation tools 

3) PATHS TOWARDS IMPROVEMENT  
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-  Two parallel paths to pursue: 

1)  Performance of numerical methods 
-  Use of parallel computing 
-  Improved linear algebra solvers for large problems 
-  Develop numerical methods that are better 

adapted to HTS problems 
-  Requires a good knowledge of the problem 
-  To be addressed with specialists in numerical 

methods 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS  

Frederic Sirois
EEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Frederic Sirois
Invited presentation 4M-LS-I1 at EUCAS 2013



© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 
© F. Sirois et al., EUCAS 2013, Genova, Italy, Sept. 15-19, 2013 40 

-  Why are the solution times so long (from a numerical point 
of view)? 

   * Based on the use of the FEM 

-  Two main reasons: 
-  Large number of DOFs, but many of them “do nothing useful” 
-  Highly nonlinear problem " Requires very small time steps 

-  Solution: use both space and time “adaptivity” 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   

Dimension Typical # of DOFs* Typical solution time 

2-D 1000 to X00,000 Minutes to hours 
3-D 100,000 to X,000,000 Hours to days 
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-  HTS exhibit a singular limit as J!0: sharp and moving current 
fronts 

-  Specific behaviour of superconductors … 
-  … despite similarities with flux diffusion in ferromagnetic materials 

(I. Mayergoyz, Nonlinear flux diffusion of electromagnetic fields, 1998) 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   
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-  Requirements for stable solution: 

 

-  Adaptive time stepping algorithms are required 
-  e.g. as IDA, DASSL, DASPK, etc. " stabilizes AND accelerates 
    (DASPK available by default in COMSOL) 
-  already noticed by R. Pecher et al., Proceedings of EUCAS 

2003, Sorrento, Italy. 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   

1734 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 18, NO. 3, SEPTEMBER 2008

Fig. 1. Reference frame for the slab problem considered in this paper.

instance if used in a coil winding. The superconductor’s phys-
ical properties are described by a power-law relation between
the electric field and the current density

(1)

with V m, A m and .
The current and field profiles can be computed by Faraday’s

law

(2)

in which we insert and . Equation (2)
then reduces to the scalar diffusion equation when considering
the infinite slab geometry shown in Fig. 1, i.e.,

(3)

The quantity is known as the diffusion coefficient, and it
is nonlinear in this case since , as shown
in (1). In practice, also depends on , but we do not consider
it in this paper. From a numerical point of view, this dependence
does not add any difficulty.

For the purpose of our analysis, we considered only two
values for the amplitude of the applied magnetic field , i.e.,
1 and 5 mT, which correspond to two different levels of partial
penetration. Indeed, based on the critical state model (CSM)
and the above material parameters, the penetration field for
which the superconductor is fully penetrated is 6.28 mT (see
the Appendix). The field amplitudes are referred to the peak
value with respect to zero, i.e., . We
chose a frequency Hz for all cases simulated below.

B. Choice of an FEM Environment

Equations (1) and (3) have been implemented in the gen-
eral form PDE mode of the COMSOL Multiphysics commer-
cial FEM package [6]. We chose this software because of its
flexibility for accessing internal data and its wide use in the
scientific community. Most findings of this paper, however, do
not depend on the specific features of COMSOL, and should,
therefore, be representative of any FEM implementation, except

Fig. 2. Typical steady-state behavior of and at two different posi-
tions in the slab, for mT and Hz. One complete period is
shown. The time transient solver must be able to intercept correctly the sudden
changes of slope of , corresponding to abrupt jumps in and .

for some issues related to the time transient solver used, as ex-
plained below.

It is important to emphasize that with any FEM formula-
tion, (3) is rewritten in a weak form, which reduces the order
of the spatial derivative of by one. Details are provided in
Section III-C1. The weak form allows for using first-order ele-
ments to approximate , which provides substantial advan-
tages on computing speed, as will be shown later.

C. Choice of a Solver

Due to the nonlinearity of the problem considered, fast tech-
niques such as time harmonic solvers cannot be used, and one
must revert to a time transient solver. This choice is costly in
terms of computation time, because it is necessary to solve for
at least two cycles, starting from null initial conditions, in order
to obtain the steady-state behavior of the ac losses. A wide va-
riety of time-stepping integration algorithms exist, and one must
choose a solver that is relevant to the class of problem involved,
which is, in the most general case, a differential algebraic equa-
tion (DAE) problem. Indeed, after the completion of the matrix
assembly process required by the FEM, we obtain a system of
ordinary differential equations in which the unknowns are called
the degrees of freedom (DOFs) of the problem. In our case, the
DOFs are the values of the flux density at each computation
node of the discretized problem, and are noted . In addition,
if any constraints are imposed, e.g., a transport current, addi-
tional equations of algebraic type must be satisfied. The whole
set of equations (differential plus algebraic) forms the final DAE
system to be solved.

In addition to solving the DAE system, the solver must be
able to account for the nonlinear nature of and the wide
range of values it may take. Indeed, as , which
results in a zero diffusion coefficient (i.e., the flux diffusion is
stopped at points where ). On the other hand, as gets
close to , the resistivity grows rapidly, and the diffusion be-
comes quasi-instantaneous. This results in a front-type diffu-
sion of and , where the sign of changes abruptly at the
front (see Fig. 2). Corresponding to this current reversal is a
singular change of slope in the profile, which must be well

Sudden change of sign of dB/dt 
must be captured accurately 

F. Sirois and F. Grilli, IEEE TAS, 
18 (3) pp. 1733-1742, 2008. 
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-  Requirements to further speed-up solution: 

 

 

J 

x 

With only 12 interpolating nodes 
" error < 1% 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   

J profile in AC field 
2000 elements regularly spaced 

Using space adaption can 
reduce the # DOFs by more 
than 1 order of magnitude!  
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2-D 

-  Adaptive numerical methods are very technical 
-  Need to couple with experts in the field 
-  Good error estimators must be developed   

 " Requires physical insights of the problem 

-  Ultimate adaption scheme: 
-  Local in both space and time 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   
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-  Example of space-time FEM solution 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   

A. Wan et al., 2012. 
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-  Example of space-time FEM solution 

3) PATHS TOWARDS IMPROVEMENT 
 PERFORMANCE OF NUMERICAL METHODS   

A. Wan et al., 2012. 
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-  Two parallel paths to pursue: 

1)  Performance of numerical methods 
-  Use of parallel computing 
-  Improved linear algebra solvers for large problems 
-  Develop adaptive methods that are well adapted to 

HTS problems 

2)  Availability and easiness-of-use of simulation tools 
-  See next page… 

3) PATHS TOWARDS IMPROVEMENT 
 AVAILABILITY AND EASINESS-OF-USE   
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2)  Availability and easiness-of-use of simulation tools 
-  New numerical methods " new computer codes 
-  Open source format (collaborative development) 
-  Collective projects should be 

-  built on top of existing tools (Sundials, GetDP, etc.) 
-  based on a free and reliable platforms (e.g. Python) 
-  easily scriptable (no more complex than a Matlab script) 

" can be used by non-programmers 
-  well documented 
-  provided with numerous examples and model files 

-  Develop public libraries of HTS power devices in 
-  Simulink, EMTP, ATP, etc. 

3) PATHS TOWARDS IMPROVEMENT 
 AVAILABILITY AND EASINESS-OF-USE   
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2)  Availability and easiness-of-use of simulation tools 
-  Collaborative work commands for 

-  a web space/forum for the modellers, where 
-  Discussions on common problems are archived 
-  Model files in any format could be posted and 

shared 
-  increased networking activities 

-  HTS modelling workshops 
-  Wider networking actions? 

-  Good news! A website already exists! 

3) PATHS TOWARDS IMPROVEMENT 
 AVAILABILITY AND EASINESS-OF-USE   

http://www.htsmodelling.com 
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3) PATHS TOWARDS IMPROVEMENT 
 WEBSITE OF THE HTS MODELLING WORKGROUP 
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-  Two parallel paths to pursue: 

1)  Performance of numerical methods 

2)  Availability and easiness-of-use of simulation 
tools 

-  Additional requirement to stimulate positive 
outcomes in both topics: 
-  Development of benchmark problems that are 

representative of industrial problems 

3) PATHS TOWARDS IMPROVEMENT 
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-  Benchmarks greatly help in focusing the R&D 
effort on 
-  the most urgent problems to model 
-  the most relevant numerical approaches 

-  Some benchmarks already exist 
-  See website 

-  High aspect ratio tape, stack of tapes, bulk 
magnetization, ferromagnetic/SC interaction 

-  More complex cases should be defined as well… 

3) PATHS TOWARDS IMPROVEMENT 
 NEED FOR BENCHMARKS 

http://www.htsmodelling.com 
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-  Invitation to industrials and manufacturers: 
-  Please contribute to benchmark definitions! 
-  Modellers are there, they are creative, they just 

need to know where you need help! 

-  4th international workshop on HTS modelling 

3) PATHS TOWARDS IMPROVEMENT 
 NEED FOR BENCHMARKS 

http://www.elu.sav.sk/htsmod2014/index.html 
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PRESENTATION OUTLINE 

1)  Context and need for numerical modelling 

2)  Overview of models and numerical methods 

3)  Paths towards improvement 

4)  Conclusion 
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TOPICS DELIBERATELY LEFT OUT 

-  Analytical solutions 
-  Materials modelling 

-  Important topic, especially for some 3-D 
configurations that may involve flux cutting 

-  Modelling for improving our understanding of 
more fundamental aspects of superconductors 
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4) CONCLUSION 

-  Numerical modelling of HTS has reached some 
maturity 
-  Modellers are getting organized in joint projects 

-  Further progress should aim at providing 
-  Easy-to-use models, usable by manufacturers and 

utilities 
-  Faster simulation tools for optimizing devices and 

systems 
-  Unifying element between modellers (mostly 

academics) and device developers/end users 
-  Joint definition of benchmarks of industrial 

relevance 
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4) CONCLUSION 
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Potential and limits of numerical 
modelling for supporting the 
development of HTS devices 

Take advantage of the full further push the 

 
 
 

Frederic Sirois
EEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Frederic Sirois
Invited presentation 4M-LS-I1 at EUCAS 2013




