

Nb₃Sn High Field Magnets for the High Luminosity LHC Upgrade Project

Giorgio Ambrosio *Fermilab*

On behalf of HiLumi-LARP Collaboration for MQXF quadrupole and HiLumi-FNAL Collaboration for 11T dipole

With contributions from:

A. Ballarino, E. Barzi, S. I. Bermudez, B. Bordini, S. Caspi, G. Chlachidze, D. Dietderich,
H. Felice, P. Ferracin, A. Ghosh, M. Juchno, M. Karppinen, V. Marinozzi, J.C. Perez,
E. Ravaioli, G. L. Sabbi, F. Savary, M. Sorbi, E. Todesco, and A. V. Zlobin

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404

Work supported by the US LHC Accelerator Research Program (LARP) through US Department of Energy contracts DE-AC02-07CH11359, DE-AC02-98CH10886, DE-AC02-05CH11231, and DE-AC02-76SF00515

Nb₃Sn magnets: 1960s

- Better performance (~50%) at 4.2 K than NbTi at 1.8 K
- Larger temperature margin
- Development of Nb₃Sn magnets started in the 60's

Why not yet?

"Why there is no Nb₃Sn magnet in any High Energy accelerator?"

Because Nb₃Sn is a brittle material

→ Large degradation vs strain

U.S. LARP

High Luminosity

→ Irreversible degradation at 0 - 0.4% intr. strain

W. B. Sampson, MT-2 1967

2

Nb₃Sn Fabrication Technologies

(Nb + Sn) in Cu matrix \rightarrow Nb₃Sn during heat treatment at 630-700 °C

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Invited Presentation 4LOr2C-02 given at ASC 2014, August 10 - 15, 2014.

A long way ...

Latest success: LARP HQ02

4LOr2C-06 "Cold Test Results of the LARP HQ02-b magnet at 1.9 K"; H. Bajas, et al.,

- 90 mm aperture, 1 m long quadrupole
- Tested at FNAL & CERN
- Reached **98% SSL** at 4.5K & **95% SSL** at 1.9K

IEEE/CSC SUPERCONDUCTIVI Invited Presentation 4LOr2C-	TY NEWS FORUM (g 02 given at ASC 2014	lobal edition) October I, August 10 - 15, 201	[·] 2014 4.					
Al shell Iron yoke Cooling hole	b ₃ Sn:	rtically split yoke						
Alignment pin location Coil	Titanium pole 2014							
Iron master	Lhe SS vessel Low Beta Quads							
Load key Biadder Assembly, algoment slots The evil is in the details								
N. of poles		4	2					
Coil aperture	mm	150	60					
Magnetic length	m	2*4/6.8	5.3					
N. of layers		2	2					
N. of turns per layer		22/28	22/34					
Operation temperature	К	1.9	1.9					
Nominal gradient/field	T/m - T	140	11.2					
Nominal current	kA	17.5	11.85					
Peak field at nom. current	Т	12.1	11.6					
Margin on load line		20%	19%	11T toblo				
Stored energy at nom. current	MJ/m	1.3	0.97	Courtoov of				
Differential induct. at nom. cur.	mH/m	8.2	12					
Force on midplane per half coil	MN/m	3.9	1.6	r. Javaly				

Outline

Challenges & Solutions

- Conductor
- Magnetic Design
- Operational Requirements
- Coil Fabrication Technology
- Structure Design & Assembly
- Quench Protection
- Status & Plans

Conductor: Challenges

- High J_c: otherwise it is not worth the "pain"
- Sufficiently high **irreversible strain limit**: for handling & operation
 - Optimization of composition, HT temperature, time(?)⁺
- High RRR and small subelements: for stability
 - Several models
 - Good understanding of strand tests*
 - Cable tests in progress
 - Magnets have shown a more complex behavior

[†]1MOr1A-01. [Invited] Irreversible Strain Limit of Nb3Sn Wires Made by the Restacked-Rod Process: Review of the Effects of Doping, Heat-Treatment, and Microstructure; *N. Cheggour;*

*1LOr2B-06. Magneto-Thermal Stability of the Nb3Sn conductor for the HiLumi Upgrade; *B. Bordini*

Conductor Optimization

- A few examples:
 - Instability induced in a single coil under tests with higher and higher preload (TQM03⁺)
 - "Enhanced Instability" mechanism in a coil of long quadrupole (LQS02*)
- Optimization of coil yield vs conductor features
- High RRR
- Small filaments
- "Adequate" J_c

[†]G. Chlachidze, et al., "The Study of Single Nb3Sn Quadrupole Coils Using a Magnetic Mirror Structure", *IEEE Trans. Appl. Supercond.* Vol. 21, No. 3, pp. 1692-1695, 2011

*G. Ambrosio, et al., "Progress in the Long Nb₃Sn Quadrupole R&D by LARP", TAS **22** 4003804

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Invited Presentation 4LOr2C-02 given at ASC 2014, August 10 - 15, 2014.

MQXF

0.85

RRP, **PIT**

132, 192

<50

>150

1.2

361

40

<5

18.15

1.525

0.55

11T

0.7

RRP, PIT

132, 120

<45

>100

1.15

438

40

<5

14.70

1.25

0.79

Heat treatment can be adjusted to meet all MQXF requirements

UNIT

mm

um

Α

Α

%

mm

mm

Deg.

Parameter

Cu/non-Cu

Strand diameter

Fabrication process

Number of strands

Cable bare width

Keystone angle

Cabling degradation

Number of filaments

Nominal sub-element diameter

RRR after full heat treatment

Minimum Ic (12 T, 4.222 K)⁺

Minimum Ic (15 T, 4.222 K)⁺

Cable bare mid-thickness

⁺Without self-field correction

RRP 132/169 by OST

Courtesy of A. Ghosh

PIT 192 by Bruker-EAS

Courtesy of A. Ballarino

3L	.Po1E-03:	: 151. Optimization of Nb ₃ Sn Cable for the Low-β Quadrupoles for the High Lumino	osity
LH	IC*; D. R.	. Dietderich; A. Godeke; I. Pong; A. K. Ghosh; A. Ballarino; LR. Oberli;	

Cable Optimization

• Cable with large number of strands needed for **Quench Protection and Stress "Reduction"**

40 strands max for CERN cabling machine

- Trade-off between mechanical stability and strand damage:
- What is acceptable?
 - LARP: no damaged strands
 - FNAL HFM: < 1 per cable edge</p>
 - QXF: ~2/strand in edge (108/127)
 - Pre-annealed strands

(Courtesy of D. Dietderich)

- Exploring testing local RRR for assessing damage
- Techniques for handling cables with limited stability

3LPo1E-03: 151. Optimization of Nb₃Sn Cable for the Low-β Quadrupoles for the High Luminosity LHC*; D. R. Dietderich; A. Godeke; I. Pong; A. K. Ghosh; A. Ballarino; L.-R. Oberli;

Magnetic Design: Dynamic effects

- In Nb₃Sn cables the inter-strand contact resistance may vary by order of magnitude after the reaction
 - Impact on harmonics during ramp up
 - Possible quench during ramp down
 - → <u>25 um thick stainless steel core</u>
 - 11T: covering almost all internal surface
 - MQXF: covering ~72% of the internal surface
 - Bumps caused by core are under investigation

X. Wang, et al., "Multipoles Induced by Inter-Strand Coupling Currents in LARP Nb3Sn Quadrupoles", IEEE Trans. Appl. Supercond., **24**, 4002607, June 2014.

Magnetic Design: Reproducibility

 MQXF & 11T models will give us info about harmonics reproducibility in Nb₃Sn magnets

- MQXF: magnetic shims in bladder slots

Shim combination	Multipoles	Value (units) @ 17.5 kA
S 1,2,3,8	+b3 (+b5)	+3.0 (+0.2)
S 4,5,6,7	-b3 (-b5)	-3.0 (-0.2)
S 1,2,4,7	+b3 +b5	+4.6 (+0.6)
S 3,5,6,8	-b3 -b5	-4.6 (-0.6)
S 1,2,5,6	+b4	+2.8
S 3,4,7,8	-b4	-2.8
S 1,3,4,6	+a3 -a5	+4.6 (-0.6)
S 2,5,7,8	-a3 +a5	-4.6 (+0.6)
S 1,4,5,8	-a4	-0.8
S 2,3,6,7	+a4	+0.8
S 1,6,7,8	-a3 (+a5)	-3.0 (+0.2)
S 2,3,4,5	+a3 (-a5)	+3.0 (-0.2)

P. Hagen and P. Ferracin, LARP-HiLumi Collab Mtg, 2014

High

Op. Requirements: Radiation Hardness

- MQXF: higher luminosity
 higher dose
- Solution: Tungsten liners
 - 16 mm in Q1; 6 mm in Q2 and Q3

Coil Fabrication: Handling

MQXF & 11T:

U.S. LARF

- Double pancake winding
 - → No interlayer splice
- Ceramic binder & Curing
 - → Easier & safer coil handling before potting

15

Coil Fabrication: Handling

MQXF & 11T:

- Fixtures assembled around coils
 - → Less risk of coil damage
- Potting with epoxy resin
 - → Coil is a solid object and stresses are distributed

Ceramic Binder - I

- The ceramic binder keeps the coil glued also after reaction
 - Easier & safer transition from reaction to potting fixture
- But it makes the fiberglass more fragile after reaction \rightarrow Is this a concern?
- Fiberglass insulation is acting only as spacer in this phase
- Potting makes the final composite
 - Binder after reaction is porous to epoxy

17

Ceramic Binder - II

- The structural properties affecting magnet performance are the properties of the composite after potting
- Several tests of short (1m) and long (3.5m) Nb₃Sn coils & magnets fabricated using this technology gave excellent results
 - Ex: HQ02: 98% SSL at 4.5K & 95% SSL at 1.9K
 - ➔ This technology is good enough for MQXF and 11T applications

4LOr2C-06 "Cold Test Results of the LARP HQ02-b magnet at 1.9 K"; H. Bajas, et al.,

Cable Insulation

Several different solutions:

- MQXF: <u>S2-glass braided</u> on the cable (145 um)
- 11T CERN: <u>C-shaped mica</u> foil (80 um) + <u>S2-glass braided</u> on the cable (75 um)
- 11T FNAL: <u>E-glass tape (75 um) wrapped on</u> the cable with 50% overlap

P. Ferracin, et al., "Magnet Design of the 150 mm Aperture Low-β Quadrupoles for the High Luminosity LHC", *IEEE Trans. Appl. Supercond.*, **24** 4002306.

M. Karppinen, et al., "Design of 11 T Twin-Aperture Nb3Sn Dipole Demonstrator Magnet for LHC Upgrades", *IEEE Trans. Appl. Supercond.*, **22** 4901504.

Winding Marginally-Stable Cables

- LARP-HQ (120mm quad): tight-fit tool
- FNAL-11T: binder painted on each turn before end

End Parts

- MQXT & 11T: end parts made of Stainless Steel
- Cables have tendency to separate from mandrel and pole parts during winding; this effect is worse with larger windings
- →MQXF: <u>accordion-style slits</u> in end parts
 →11T: <u>flexible legs</u>

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Invited Presentation 4LOr2C-02 given at ASC 2014, August 10 - 15, 2014.

Structural Design

MQXF

- Bladders & keys: handles well high forces
- Collars: easy scale-up, fit well for 2-in-1 design

2LPo2J-06: 195. Support Structure Design of the Low-β Quadrupoles Short Model for the High Luminosity LHC; *M. Juchno, et al.,*

M. Karppinen, et al., "Design of 11 T Twin-Aperture Nb3Sn Dipole Demonstrator Magnet for LHC Upgrades", *IEEE Trans. Appl. Supercond.*, **22** 4901504.

11T

Structural Design

2D max azimuthal stress:

- 11T-CERN, after cold mass assembly: 143 MPa
- 11T-FNAL, during collaring: 148 MPa
- MQXF, after cool-down: 170 MPa

Challenges

- MQXF: demonstrate long magnets
 - Tight tolerance and control of preload
- 11T-FNAL: gap control
- 11T-CERN: control of the key-pole interface

Quench Protection

- MQXF: high energy density = 2 times LHC magnets
- 1st simulation (MT23):
 - Outer layer heaters
 - Energy extraction (2 MQXFs in series)
 - Conservative assumptions
- → T_{hot-spot} ~ 350 K (without redundancy)

G. Manfreda, et al., "Quench Protection Study of the Nb3Sn Low-beta Quadrupole for the LHC Luminosity Upgrade", *IEEE Trans. Appl. Supercond.*, **23** 4700405.

Quench Protection Improvements

- <u>Understanding "dynamic effects"</u> = energy extraction and quench propagation caused by inter-filament losses
- Development of <u>heaters with copper-cladding</u>
- Development of heaters for inner layer (to be demo.)

2LPo2K-02: 197. Study of quench protection for the Nb3Sn low-beta quadrupole for the LHC luminosity upgrade (HiLumi-LHC); *Vittorio Marinozzi, et al.,*

CLIQ

- Coupling-Loss Induced Quench System
- Very effective on HQ02 test
- To be demonstrated for long magnets
- Could provide perfect redundancy with heaters on outer layer

1LOr2B-01. First Test of CLIQ, the New Coupling Loss Induced Quench Protection System, on a Nb3Sn Magnet; *E. Ravaioli, et al.,*

Status & Plans

For 11T see next talk

MQXF:

Luminosity

- Making practice coils (LARP & CERN)
- Started real coils
 - − One coil for "mirror test" (LARP) → Test 01/15
 - 1st coil for SQXF1 (LARP)
 - − SQXF1 shell procured (CERN) → Test 06/15
- Long coils fabrication starts in 2015
 - single coil in "mirror"
 - 1st long prototype

- → Test Spring 2016
- ➔ Test Fall 2016

28

Conclusions

- The development of Nb₃Sn accelerator magnets has reached maturity
 - $-Nb_3Sn$ are part of the HL-LHC
- Now it is the time to address remaining challenges and fix all details
- The MQXF and 11T projects are on truck for successful demonstration
- Magnet options for future HEP accelerators are increasing!

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Invited Presentation 4LOr2C-02 given at ASC 2014, August 10 - 15, 2014.

O ENERGY EFFICIENCY

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) October 2014 Invited Presentation 4LOr2C-02 given at ASC 2014, August 10 - 15, 2014.

Back up slides

Nb3Sn Magnets for HL-LHC - G. Ambrosio

31

Magnetic Design: Magnetization

- Large filaments → large magnetization at injection
- 11T strategy*:
 - RRP option was changed from 108/127 to 132/169
 - Minimum current may change from 350 A to 100 A
 - May use passive shims

*M. Karppinen, et al., "Design of 11 T Twin-Aperture Nb3Sn Dipole Demonstrator Magnet for LHC Upgrades", *IEEE Trans. Appl. Supercond.*, **22** 4901504.

4LPo2E-09: 141. Field errors induced by persistent current in high-field superconducting accelerator magnets; *Xiaorong Wang, et al.*

Magnetic Design: Iron Saturation

- In the 11T cross talk between apertures increases at high field
 - Holes in yoke and shape optimization vertically split yoke yoke insert

M. Karppinen, et al., "Design of 11 T Twin-Aperture Nb3Sn Dipole Demonstrator Magnet for LHC Upgrades", *IEEE Trans. Appl. Supercond.*, **22** 4901504.

Op. Requirement: Heat extraction

- MQXF: Tungsten liners keep heat deposition in **HL-LHC** at present LHC levels
- Heat extraction from epoxy potted coils is OK if:
 - Polyimide coverage of coil inner surface < 50%
 - Holes through pole for heat flow to heat exchangers
 - One hole every 50 mm

