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Abstract— The nonlinear wave propagation in a series-
connected Discrete Josephson Junction Transmission Line 
(DJTL) is investigated. This structure consists of a 
superconductive Coplanar Waveguide (CPW), that is 
periodically loaded by either single or lumped arrays of 
Josephson junctions (JJs). Each junction is represented by the 
basic circuit model which leads to a nonlinear inductor element. 
Having a significant number of junctions per wavelength, the 
discrete transmission line (TL) can be considered as a uniform 
nonlinear transmission line. The nonlinear wave equations are 
solved numerically by Finite Difference Time Domain (FDTD) 
method. Features and characteristics such as cut-off propagation, 
dispersive behavior and shock wave formation, which are 
expected from wave propagation through the nonlinear DJTL, 
are discussed.  
 
Index Terms— Applied superconductivity, Microwave 
superconductivity, Discrete Josephson transmission line, Finite 
Difference Time Domain Method, Nonlinear microwave 
propagation, Josephson junction devices, Nonlinear  transmission 
lines, Shock waves, Dispersion. 

I. INTRODUCTION 
ITH the discovery of supercurrent tunneling  through 
the Josephson junction, physicists and engineers have 

been able to develop several new devices that have 
extraordinary characteristics [1]. This has broadened the 
horizon of RF and microwave theory and applications, and it 
retains to this day a matured class of knowledge and 
technology which is referred to as Microwave 
Superconducting Electronics [2]. The unique nonlinear 
property of Josephson junction is the main motivation to 
design and fulfill structures and devices such as nonlinear 
transmission lines [3], soliton propagators [4], microwave 
oscillators [5], mixers, detectors [6], [7], parametric amplifiers 
[8] , SQUID amplifier [9], digital information processing, and 
analog amplifier and transistor [4]. These devices can be used 
in microwave systems, electronic components [2], 
superconducting optoelectronics [10] and quantum computer 
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circuitry [11].  
The continuous long Josephson transmission line (JTL) 

shows very promising attributes [4], but the discrete 
counterpart (DJTL) has demonstrated to have superior 
properties for microwave applications and electronics due to 
its microwave compatibility, impedance matching, uniform 
distribution of biasing current, higher wave velocity and low 
cut-off frequency. Wave propagation through parallel-
connected DJTL has been studied in [3], because it was 
confidently believed to acquire very similar characteristics as 
those in continuum JTL. By circuit analysis in JJSPICE solver, 
shock wave formation in a series connected DJTL has already 
been reported for very low frequencies [12].   

In this paper, a practical series-connected DJTL 
implemented on a 50Ω CPW is proposed. We analyze the 
structure in section III with a systematic and robust approach 
to capture the wave nature of the traveling wave through the 
structure. In section IV, we analytically study the cut off 
condition of the DJTL. In part V, we develop a stable and 
rigorous FDTD technique to solve the nonlinear wave 
equation, followed by the simulation results presented in 
section V.     

II. SERIES-CONNECTED DJTL ON CPW 
To construct a series DJTL, the structure of Fig 1 (a) is 

proposed. This is a Z଴ ൌ 50Ω superconducting coplanar 
waveguide (CPW) which is periodically loaded by an array of 
Josephson junctions. We use Al-Al2O3-Al junctions as they 
have small critical current and small junction capacitance, 
typically ܫ௖ ൌ 1 െ 2µA and ܥ௃ ൌ 5fF [13]. Therefore, by 
substituting critical current into the equation ܮ௃଴ ൌ Φ଴/2ܫߨ௖, 
the series associated inductance to the single junction will be 
relatively large, ܮ௃଴ ൌ 0.17nH, where Φ଴ is the magnetic flux 
quanta with value of Φ଴ ൌ 2.0679 ൈ 10ିଵହ T. mଶ. Moreover, 
by lowering the temperature far below the critical temperature 
of Al, the normal resistive channel of the junction can be 
removed, and the basic model of the JJ can represent the 
electrical performance of each junction, provided the 
following current is restricted less than Iୡ. By utilizing this 
model each junction can be replaced by a nonlinear inductor 
satisfying  
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where ܫ is the current flow passing through the junction. The 
distributed inductance and capacitance of a 50Ω TEM-
transmission line are ܮ ൌ 166 nH/m and ܥ ൌ 66 pF/m, so by 
putting an array of ܰ ൌ 10 junctions at each block and 
distributing these blocks at every centimeter of the line, the 
total amount of nonlinear distributed JJ inductance will be 
comparable to the distributed inductance of the line.  
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Fig 1. (a)Realization of series-connected DJTL on a CPW. (b), (c) Distributed 
circuit model of series-connected DJTL with basic  JJ and nonlinear inductor, 
respectively, for an array of N junctions. The period of the transmission line is 
denoted by Δz. 

III. TRANSMISSION LINE EQUATIONS FOR SERIES DJTL 
If number of JJ blocks at each wavelength is roughly more 

than 20 (Δz ൑ λ/20), they are distributed uniformly along the 
waveguide, so slow-varying approximation can be applied to 
the structure. Therefore, the structure can be considered 
effectively homogenous [14] and discrete inductance 
associated to each Josephson block can be stated in the unit of 
nH/m. The transmission line model for this effectively 
homogeneous nonlinear structure is illustrated in Fig 1(c). The 
nonlinear equations that characterize the propagation of the 
voltage and current are  
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As mentioned in the previous section, instead of a single 

junction, there exists an array of ܰ junctions at each unit cell, 
such that the effective mounted inductance will be ܰܮ௃଴ 
instead of ܮ௃଴, as illustrated in Fig 1 (c). Eliminating one of 
these two coupled variable, i.e. voltage, results in the 
following nonlinear wave equations for the current 
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Putting a voltage source and a load impedance at the ends 
of the DJTL and turning the DJTL on at ݐ ൌ 0, necessary 
boundary and initial conditions are provided in the form of 

 

 ௦ܸሺݐሻ ൌ ܴ௦ܫሺ0, ሻݐ ൅ ܸሺ0, ሻ (4)ݐ

 ܸሺݖ௠௔௫, ሻݐ ൌ ܴ௅ܫሺݖ௠௔௫, ሻ (5)ݐ

   
Equations  (4) and (5) are necessary to have a unique wave 
solution. In above equations, ௦ܸሺݐሻ is the waveform of the 
voltage source, ܴ௦ is the associated series resistance with the 
source, and ܴ௅ is the load resistor. As the boundary conditions 
at the ends of the structure involve both current and voltage 
variables, they are called mixed-boundary conditions. 
Therefore, the coupled equations in  (2), seems more suitable 
than the single  (3) to address the physical behavior of the 
DJTL.  

Equation  (3) can be linearized by applying small signal 
approximation ሺܫ ا  ௖ሻ, so we expand the inverse sineܫ
function in Traylor’s series, and then we hold the first term 
and ignore all other terms, i.e. sinିଵሺܫ/ܫ௖ሻ ൎ  ௖. Inserting aܫ/ܫ
solution in the form of the plane wave harmonic,  
ܫ ൌ  ܴ݁൛ܫ଴݁௝ሺఠ௧ି௞௭ሻൟ into the linearized equation, results in the 
following dispersion relation 

 
 ݇ଶ ൌ ൫ܮ ൅ ଶ (6)߱ܥ௃଴൯ܮܰ

The constant ܫ଴ is the complex amplitude of the plane wave, 
and ݇ is the phase constant of the wave.  

IV. LADDER NETWORK EQUATIONS FOR SERIES DJTL 
DJTL can also be modeled by a ladder network. This has 

been developed for the parallel-connected DJTL, and the 
resultant discrete equations which resemble the evolution of 
flux (߮) in continous long Josephson junction is usually 
referred to as fluxon dynamic equations [15]. In this view, 
DJTL is divided into N identical segments; each covers one 
period. Each segment (or period) is displayed by an LC circuit 
connected to the JJ block, as shown in Fig 2, and discrete 
index n accommodates the continuous variable ݖ. As the 
transmission line part of each period is modeled by a single 
LC circuit, this model is also valid in the low frequency 
domain, when the length of transmission line (period Δݖ) is 
small compared to the wavelength. However, this model 
captures the effect of discreteness of the line, as explained at 
the end of this section.   

Similar to the parallel-connected DJTL, we attain the 
following equation to express flux propagation in this 
structure     
 1
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Fig 2. The discrete circuit model of  DJTL 
 
where 1 ൑ ݊ ൑ ܰ and ߮௡ is the total superconducting phase 
difference on the nth junction block as shown in Fig 2. 
Therefore, there are ܰ nonlinear ordinary differential 
equations, all in the format of  (7). Assigning proper boundary 
and initial conditions, the system of differential equations 
must be solved numerically. Afterward, by knowing all ߮௡ at 
each unit cell, we are able to find the associated voltage and 
current to the unit cell. Considering a particular harmonic 
solution of ߮௡ ൌ  ܴ݁൛߮଴݁௝ሺఠ௧ି఑௡ሻൟ with constant and small 
amplitude approximation (sin ߮௡ ~߮௡) and substituting this 
into the discrete equation  (7), this yields the following 
dispersion relation 
 sinଶሺ2/ߢሻ ൌ

1
4 ߱ଶܥ൫ܮ ൅ ௃଴൯Δz2. (8)ܮܰ

 
Parameter ߢ stands for the phase difference between two 

subsequent cells. If the phase constant and period of the 
structure is ݇ and Δݖ, parameter ߢ will be equal to ݇Δݖ. If the 
long wave approximation (Δߣ/ݖ ՜ 0ሻ holds, ߢ ൌ ݇Δݖ is very 
small and by using the approximation of 2 sinଶሺ2/ߢሻ /ଶߢ~
2 ൌ ݇ଶΔݖଶ/2 two dispersion relations in  (6) and  (8) match 
very well. However, as the frequency approaches the Bragg 
cut-off frequency, the wave becomes dispersive and these two 
dispersion relations deviate from each other. Based on  (8), to 
have a wave propagation condition, the following condition 
must be met  
 ߱ ൑

2

Δݖටܥ൫ܮ ൅ ௃଴൯ܮܰ
. (9)

 
The right hand side of this inequality is the Bragg cut-off 

frequency which corresponds to the phase constant of 
݇ ൌ  The cut-off behavior of DJTL has been formerly .ݖΔ/ߨ
mentioned in [6],[16]. 

V. FINITE DIFFERENCE TIME DOMAIN METHOD 
By driving DJTL below the Bragg frequency, the 

transmission line model is accurate enough to describe the 
behavior of the traveling wave through the DJTL. As the wave 
equation for DJTL structure is a set of nonlinear partial 
differential equations in time and space domain, we developed 
a rigorous FDTD solver based on the Lax-Wendroff explicit 
scheme to solve the wave equations [17]. The validity of this 
tool has been justified by comparing the results to those 
produced by explicit Crank-Nicolson technique. The detail of 
this FDTD technique is described in [18]. With this method, 
one can monitor the time evolution of an incoming signal with 
any shape such as sinusoidal and Gaussian, during its trip 
along the DJTL and its interaction with other signals. Also, 

transient, steady state response of the line, and shape 
forming/deforming of any pulse can be investigated.    

VI. NUMERICAL RESULTS 
The physical parameters of the DJTL under study are 

chosen as those mentioned in section II. i.e. ܮ ൌ 166 nH/m, 
ܥ ൌ 66 pF/m, ܫ௖ ൌ ௃଴ܮ ,ܣߤ2 ൌ 0.17nH and the number of 
junctions at each block is ܰ ൌ 10. Assuming the period of 
Δݖ ൌ 1cm, the effective distributed JJ inductance can be 
expressed in the unit nH/m by expression ܰܮ௃଴/Δݖ which 
yields 170 nH/m. Bragg cut off frequency can be found by 
using the right hand side of the inequality  (9), ஻݂ ൌ 6.75 GHz. 
A sinusoidal voltage source drives the DJTL with amplitude of 

௦ܸ ൌ 10µV, frequency of ௦݂ ൌ 1.2 GHz and matched series 
impedance  of ܴ௦ ൌ 50Ω. The line is ended with a load 
impedance of ܴ௅ ൌ 50Ω. Meeting the condition ߱௦ ൏ ߱஻, 
wave propagates through the DJTL. Fig 3 shows the voltage 
wave propagation over time and space axes.  

 
Fig 3. Propgation of sinosoideal wave in a DJTL. . ܮ ൌ 166 nH/m, ܥ ൌ
66 pF/m, ܫ௖ ൌ 2µA, ܮ௃଴ ൌ 0.17nH, ܰ ൌ 10, Δݖ ൌ 1cm, ௦ܸ ൌ 10µV, ௦݂ ൌ
1.2 GHz, ܴ௦ ൌ 50Ω, ܴ௅ ൌ 50Ω. 
 

To justify the validity of the FDTD code, we remove the JJ 
block by letting ܮ௃଴ ൌ 0, put a 50Ω matched load at the end, 
and drive the DJTL by the matched source at frequency 

௦݂ ൌ 1.2 GHz. The regular response of linear transmission line 
is expected, with no reflection at the end. Also, the amplitude 
of the voltage wave traveling through the waveguide must be 
one half of the amplitude of the voltage source. These are in 
excellent agreement with the result in Fig 4.  

By changing the physical parameters of the DJTL, the cut 
off frequency will change.  For example, by putting ܰ ൌ 300 
junctions at each JJ block and increasing the period to 
Δݖ ൌ 2cm, the cut off frequency is found as ஻݂ ൌ 1.18GHz. 
Hence, if the driving voltage sources has the frequency of  

௦݂ ൌ 1.2 GHz, inequality  (9) fails to satisfy and the cut off 
conduction occurs as seen in  Fig 5.  

According to equation  (1), nonlinear Josephson inductance 
grows as current increases, so we expect that high-current 
sections of the waveform to propagate slower than the low-
current sections. This property of series-connected DJTL 
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cause shock wave formation as displayed in Fig 6 for the 
Gaussian pulse.   

 
Fig 4. The wave pattern of a regular transmission line connected to the 
matched source and load with L = 166 nH/m, C = 66 pF/m, LJ0 = 0 nH. 

 

Fig 5. Stopped-propagation of voltage wave through a DJTL, L = 166 nH/m, 
C = 66 pF/m, LJ0 = 0.17 nH, Ic = 2 μA, N=300, Δz = 2 cm, Vs = 20 μV, fs = 
1.2 GHz, Rs = 50 Ω, RL = 50 Ω. 

 
Fig 6. Sketch of the formation of a shock wave in a nonlinear Josephson 
junction transmission line. 

VII. CONCLUSION 
By periodically loading a superconducting CPW with 

discrete blocks containing an array of overdamped [6] 
Josephson junctions, a series-connected DJTL is proposed to 
realize a nonlinear TL. Instead of the conventional approach 
of circuit theory, the transmission line analysis is invoked to 
explore the electromagnetic propagation in the structure. The 
nonlinear wave equations are solved by FDTD method based 
on the explicit Lax-Wendroff scheme. Shock wave formation 
and cut off propagation are demonstrated in simulation results.  
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