Development of flexible HTS CORC[®] wires and terminations for high-field magnet applications

Jeremy Weiss and Danko van der Laan

University of Colorado, Boulder Advanced Conductor Technologies, Boulder, Colorado, USA

Advanced Conductor Technologies LLC www.advancedconductor.com

CCA, Aspen CO, 2016

Conductor on Round Core (CORC[®]) cables

CORC® cable principle

Winding many high-temperature superconducting YBCO coated conductors in a helical fashion with the YBCO under compression around a small former.

Benefits

- The most flexible HTS cable available
- Very high currents and current densities
- Mechanically very strong
- Partially transposed
- Current sharing between tapes

Programs at Advanced Conductor Technologies

Department of Energy – Office of High Energy Physics (DOE-HEP) CORC[®] cables for accelerator magnets including Canted Cosine Theta magnets

LHC at CERN

2. Department of Energy – Office of Fusion Energy Sciences (DOE-OFES) CORC[®] cable for fusion magnets, cable joints, and terminations for fusion magnets

3. Navy

CORC[®] power transmission, fault current limiting cables, and Dielectrics for CORC[®] power transmission

Advanced Conductor Technologies LLC www.advancedconductor.com

ITER

LCS 4 USS Coronado

All Rights Reserved. Copyright Advanced Conductor Technologies LLC, 2016

What makes the CORC[®] wire topology special? Strain management.

Looking at strain in a CORC[®] conductor

Looking at strain in a CORC[®] conductor

Looking at strain in a CORC[®] conductor

Moving from 50 micron to 30 micron substrates allowed us to use a former with a smaller diameter, incorporating more than a dozen additional tapes into the CORC cross section

• Notice that I_c degrades around -1.2 % strain.

Decreasing tape thickness to increase CORC[®] J_e

Introduction of CORC[®] wires

CORC® cables

- tapes with 50 μm substrate
- 0.D.: 5 10 mm
- tapes of 3 mm and 4 mm width

CORC® wires

- tapes with 30 μm substrate
- O.D.: 2.5 5 mm
- tapes of 2 mm and 3 mm width

First round, isotropic YBCO wire!

What benefit does a wire have over a cable? Flexibility

Improved flexibility of CORC[®] wires

Bending tests shows > 80% Ic retention after bending to 3.5 cm diameter.

CORC[®] cable and wire production

Winding of long CORC[®] cables with custom cable machine

- Accurate control of cable layout **CERN**
- Long cable lengths possible (> 100 meters)
- *I*_c retention after winding 95-100 %

Commercial sales

- 12 meter CORC[®] cable (38 tapes)
- Cable for detector magnets

LBNL

- 50 meter CORC[®] wire (16 tapes)
- Wire for accelerator magnets

What about terminations?

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Presentation CO-01 given at CCA 2016; Aspen,Colorado,USA, September 11 – 14, 2016.

How can we terminate several dozen HTS tapes in a CORC[®] cable or wire?

Conical terminals

- Easy to damage when mounting cables
- Not practical

Tube terminals

- Tapering of each layer of tape allows for more even contact resistance
- Terminal only slightly larger than conductor
- robust

Advanced Conductor Technologies LLC www.advancedconductor.com

Summary

CORC® wires are now available

- Diameters of 2.5-5 mm
- Bendable to 3.5-5 cm diameter
- Robust terminations being developed

CORC® wires are practical!

- No reaction needed
- No handling of single tapes
- CORC[®] wires are ready for use in accelerator magnets

CORC[®] wire J_e on track to 600 A/mm² at 20 T

• Clear path to improving J_e by decreasing tape thickness, improving pinning properties and/or improving compressive strain tolerance

Many thanks to SuperPower for making the transition to 30 μ m substrates!

