

Grain boundaries in coated conductors: still an issue at low temperatures?

<u>M. Lao</u>,¹ J. Hecher,¹ P. Pahlke,² M. Sieger,² R. Hühne,² M. Falter,³ A. Usoskin⁴ and M. Eisterer¹

¹Atominstitut - TU Wien, Vienna, Austria ²Institute for Metallic Materials, IFW-Dresden, Dresden, Germany ³Deutsche Nanoschicht GmbH, Rheinbach, Germany ⁴Bruker HTS GmbH, Alzenau, Germany

5 September 2016 ASC 2016, Denver, Colorado, USA

Introduction

 Grain boundaries (GBs) have been known to inhibit the current-carrying capacity of HTSCs.

$$J_{ ext{c}}(heta_{GB}) = J_{ ext{c}}(0) \exp(-rac{ heta_{GB}}{ heta_{c}}); heta_{GB} \geq 4^{\circ}$$

 Biaxially textured metallic substrates and textured buffer layers has prompted production of long-length coated conductors (CCs) with high J_c.

¹D. T. Verelbeyi, et al. APL 76, 13, pp. 1755-1757, 2000

Motivation

- ▶ The growing demand of large magnetic fields has called for operation of CCs to 4.2 K \rightarrow effects of GBs become more pronounced as temperature decreases.
- ► We aim to investigate the collective effects of the GBs to the percolative current flow in CCs and its significance at low temperatures (T < 77 K).</p>

Magnetic field profile

- Remanent field profile at 4 K
- Pulsed laser deposited (PLD) YBCO on two types of metallic templates (IFW)
- Patterned by wet chemical etching (IFW).

Magnetic field profile

Magnetic field profile

Microstructure

- YBCO-NiW
- Each grain of RABiT Ni5W substrate is faceted at different angles (vicinal angle <10°).
- The deposited YBCO layer reproduces the misorientation.
- Aside from percolative current flow, the spatial distribution of J_c is also inhomogeous.

Transport $J_{\rm c}$

- Non-monotonic magnetic field dependence of $J_{\rm c}$ in the YBCO-Ni5W sample 8/17

Transport $J_{\rm c}$

- $J_c(B)$ has a peak when $H \parallel ab$.
- Stochastic behavior at low fields, i. e. < 0.1 T.

Transport $J_{\rm c}$

- ► Grain boundary limited regime.
- Pinning limited regime.
- Cross-over.

 Cross-over - Abrikosov vortices providing a periodic potential to pin vortices in GBs³

$$J_c = J_o \sqrt{1 + H/H_s} \qquad (1)$$

³A. Gurevich and L. D. Cooley, *PRB* **50** 13563 1994.

CSD grown-YBCO film

- Chemical solution deposited (CSD) YBCO on Ni-5at%W produced by Deutsche Nanoschicht (d-nano).
- No visible boundaries in the SEM image of the surface → meandering structure of GBs.
- The granular behavior in the field profile at T=4 K is significantly reduced.

M. Sieger, IFW-Dresden

11/17

CSD grown-YBCO film

 $J_{\rm c}(B)$ at 40 K

▶ The peak in $J_c(B)$ at $H \parallel ab$ is reduced and shifted to low fields in CSD-YBCO sample.

CSD grown-YBCO film

 $J_{\rm c}(\phi)$ at T =40 K and $\mu_{\circ}H_{\rm app}$ =0.5 T

- The ϕ -independent region is not observed.
- Although, $J_{c,H\parallel ab}$ increases to a value close to its self-field.

Self-field J_c

- ▶ The PLD-YBCO on NiW sample has lower J_c compared with PLD-YBCO on ABAD/SS substrate. Both CCs are short lab samples.
- The CSD-YBCO on NiW, a piece from a long length commercially produced tape, has competitive J_c value. It's performance is optimized at 77 K.

Conclusions

- Granularity effects are still found to be strongest in PLD-YBCO films on RABITS NiW.
- A clear transition from grain boundary limited to pinning limited J_c was shown in transport measurements.
- The grain boundary limited regime including the cross-over region occurs up to 2 T at 40 K and will span a larger range in field as temperature decreases.
- CSD-YBCO is a promising route to minimize the effects of granularity due to the meandering formation of the boundaries compared to the planar form in PLD-grown films.

Acknowledgments

- ► Dr. Johannes Hecher, TUW
- Dr. Michael Eisterer, TUW
- Dr. Ruben Hühne, IFW
- Patrick Pahlke, IFW
- Max Sieger, IFW
- > Dr. Martina Falter, Deutsche Nanoschicht
- Dr. Alexander Usoskin, Bruker

Conclusions

Thank you!