

Multi-beam SIS Receiver Development

Anne-Laure Fontana, Catherine Boucher, Yves Bortolotti, Florence Cope, Bastien Lefranc, Alessandro Navarrini, Doris Maier, Karl-F. Schuster & Irvin Still

Institut de RadioAstronomie Millimetrique (IRAM)

List of Acronyms

- IRAM: Institut de RadioAstronomie Millimetrique
- RF: Radio Frequency
- IF: Intermediate Frequency
- SIS: Supraconducting-Isolator-Supraconducting
- SSB: Single Side Band
- 2SB: Two Side Bands
- LNA: Low Noise Amplifiers
- OMT: Ortho Mode Transducer
- GM-JT: Gifford-Macmahon-Joule-Thomson.
- GM: Gifford-Macmahon
- FOV: Field Of View
- HPBW: Half Power Beam Width
- PTFE: Poly Tetra Fluoro Ethylene
- HDPE: High Density Poly Ethylene

IRAM Pico Veleta Telescope

Current Heterodyne Instrumentation @ Pico Veleta

GM-JT Daikin cryocooler CG308SC

3 stages: 77K /15K /4K(2.5W)

Coldest T° ~ 4.2 K (unloaded stage)

HDV10 cryostat

2 stages: 77K/ 15K

GM Sumitomo cryocooler RDK-3ST

3 stages: 77K /15K /4K(1W)

Coldest T° ~ 3 K (unloaded stage)

Future Heterodyne Instrumentation @ Pico Veleta

Multi-beam SIS Receiver Overview

Synoptic of a 4-pixel array **TELESCOPE RF** signals Ambient Optics (300K) 300K HDPE vacuum window 77K PTFE infrared filter 15K Cryogenic Optics (15K or 4K) RF RF module: 4K IF amplifiers: 15K or 4K IF signals

3D view of the future 3mm multi-beam

Requirements and Critical Design Items

Main requirements:

- Compact size
- Easy to be repaired or upgraded
- State of the art performances (noise, stability, optics)

Some critical points in the receiver design:

- Optics design → receiver size, cryostat size, receivers performances...
- RF module design → cryostat size, receiver performances, repairing procedure
- Cryogenic aspects → cryostat size, receiver performances, repairing procedure

Optics Design Overview of the 3mm Multibeam

- ■Frequency independent sub reflector illumination (taper = -12dB)
- ■Transform 2HPBW (=68.5mm in FP) spacing on the sky into 42mm between feeds
- •Limited thermal radiation due to 300K window and IR filter
- →4W on 77K stage
- →80mW on 15K stage
- Optimal beam coupling between telescope and horn apertures
- K-mirror for image rotation

3mm MB: Individual Cryogenic Optics Design Option A: Refractive Optics

Lens design @ 4K:

- Permittivity: $\mathcal{E}_{r} = 2.07 (300K) \rightarrow 2.16 (4K)$
- Linear thermal contraction: 1.6% to 2.1%

<u>Effects of lenses absorption losses on receiver noise temperature:</u>

 \rightarrow ~ + 5K (@ 300K window output) if Trec = 50K (@ horn output)

3mm MB: Individual Cryogenic Optics Design Option B: Fully Reflective Optics

- → No absorption loss & reflection loss
- → Negligible thermal contraction

3mm MB: Cryogenic RF Module

Thermal Issues:

• Manufacturing materials of cryogenic waveguide components :

Polarization diplexer (gold plated brass)

- Physical temperature of active components (mixers, LNA...)
- ■Dismouting/ repair procedure: cryogenic IF cables & connectors

Cryogenic Waveguide Components: Materials Analysis

Thermal simulations

Material requirements:

- Low mass volume
- High electrical conductivity
- High thermal conductivity
- Accurate machining

Cryogenic Design: Optimal Operating Temperatures of SIS Mixers and LNA

Receiver noise performances vs. SIS mixer physical temperature:

Receiver noise performances vs. LNA physical temperature:

- →In the HERA cryostat (GM-JT DAIKIN cryoccoler), mixers physical temperatures ~ 4.7K
- →In the EMIR cryostat (GM SUMITOMO cryocooler), mixers physical temperatures ~ 4K

Cryogenic Design: Thermal Budget of the 3mm Multi-beam

(50 pixels, 2SB = 100 IF outputs are considered)

Main contribution on 4K stage: LNA (9mW/ ampli)

CALTECH 4-12GHz amplifier

IF transport: SS/CuBe semi-rigid cables (5W(77K)/560mW(15K)/20mW(4K)) (Other solutions are also considered for IF transport for mechanical reasons):

Flexible cryogenic cable from HIGHTEC

 Wires: MG, φ=0.2mm, n~1000 (worse case number for electronic bias of LNA and mixers)

GM RDK-3ST Sumitomo cryocooler maximal capacity on 4K stage

Cryogenic Machine?

<u>Cryocooler requirements to optimize receiver performances:</u>

- Available power on 4K stage >1.2 W (+ safety margin)
- Temperature on the *loaded* 4K stage < 4.2K
- Stability: minimize temperature fluctuations of LNA!

Solutions?

- → Use 2 cryocoolers? (Cost, complexity, space required ...)
- → Reduce power consumption of cryogenic LNA
- →Not to operate LNA or SIS mixers at the optimal temperature

Requirements for cryostat:

- Low weight → aluminum
- Shape optimized to minimize receiver size and maximize ease of access to cryogenic components for repair or upgrade

RDK-3ST Sumitomo cryocooler