IEEE/CSC & ESAS European Superconductivity News Forum (ESNF) No. 22 October/November 2012 This is an invited ASC 2012 presentation 2LA-01 not submitted to *IEEE Trans. Appl. Supercond.* (2013) for possible publication.

Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable – First Experimental Proof of Concept

<u>Vysotsky V.S.¹</u>, Nosov A.A.¹, Fetisov S.S.¹, Svalov G.G.¹, Antyukhov I.V.², Firsov V.P.², Blagov E.V.³, Kostyuk V.V.⁴, Katorgin B.I.², Rakhamnov A.L⁵.

¹⁾Russian Scientific R&D Cable Institute, 111024, Moscow, Russia
²⁾Moscow Aviation Institute – Technical University125993, Moscow, Russia
³⁾Institute of Nanotechnology and Microelectronic, 119991, Moscow, Russia,
⁴⁾Russian Academy of Science, 119991, Moscow, Russia,
⁵⁾ ITAE RAS, 125412, Moscow, Russia

2LA-01, ASC - 2012, Oct. 2012, Portland (Or), USA

1 of 24

Background of the work

- *Energy should be not only produced but delivered to the place of consuming
- *It is being produced sometimes very far from the consuming area
- *Distance could be could be hundreds and thousands kilometers
- *It is transferred by an energy carrier

Energy carriers could be:

Oil

Electricity

Gas, sometime LPG

World

EU-25

Germany

Background of the work Examples of the energy transferring routes

East Siberia for South-East Asia

Power station

Energy transfer line

to Hokkaido ~100-

150 km

Further to S-E.Asia

Gas and oil from E.Siberia

Solar energy in Sahara

World 300 x 300 km² EU-25 150 x 150 km² Germany 50 x 50 km²

> From N. Nakićenović IASS Workshop, May, 2011, Potsdam

Background of the work electricity is the most common method for energy transfer

HVDC overhead lines 750-800 κV Huge sizes

Power density:
 800 kV x ~1 kA ~ 0.8-1 GW
 s~50 m x 100 m ~ 10⁴ m²

p~20 W/cm²

2LA-01, ASC - 2012, Oct. 2012, Portland (Or), USA

From C.Rubbia IASS Workshop, May, 2011, Potsdam

Background of the work -Superconductivity is the matter of choice to transfer electricity

From the Garwin-Matisoo ideas

And early VNIIKP (and BNL) works with LTS

We are moving to HTS!!

Background of the work -Superconducting HTS cables

Cable configuration: 3 phases in 1 common cryostat

Sumitomo

13.2kV, 69MVA

Ultera-ORNL

Nexans-AMSC ~500 MVA

~ 100-500 MVA; s~1000 cm² p~ 1 ÷ 5 ·10⁵ W/cm²

Usual cables – about the same sizes, but 20% of losses and less power density

Russia - VNIIKP

<mark>20 кV – 1.5/2 кА</mark> -50/70 MVA

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 22, October/November 2012. Background of the work - Other energy carriers

Oil and gas – traditional and it is clear about them

- LNG, T~150-160 K we have no such superconductors \otimes , yet...
- "North Stream" gas pipeline: $27.5 \cdot 10^9 \text{ m}^3/\text{year}$; ~870 m³/s; ~40 MJ/m³ 3.5 \cdot 10^10 W; with s~18000 cm² (\emptyset ~150 cm) **p~2 \cdot 10^6 W/cm²**

What about hydrogen?

- 120 MJ/kg best fuel!
- Being liquid best cryogen! 446kJ/kg against 20.3 kJ/kg for LH2 and 199 kJ/kg for LN2
- When burned water is remained best ecology!
- And could be transferred at liquid state at T~ 20-27 K!
- **We DO HAVE** superconductors for such temperatures!

Why not use₄ it after all?

hydrogen + superconducting cable = hydricity

MgB₂ with single phase liquid hydrogen with or even without additional single phase N₂ coolant offers major simplifications with respect to classic Nb-alloys and boiling He + N₂, with practical distances of up to several hundred km.

C. Rubbia, "The future of large power electric transmission", available at: http://www.iass-potsdam.de/fileadmin/user_upload/Rubbia_presentation.pdf

Old and long time discussed idea. Of course it is may be a bit exotic and may be for the day far after tomorrow.

But in any case sometimes it should be started and we somebody should go to practical realization of this.

And we got some practical results !!

Interpretent of the concept Our project is to proof EXPERIMENTALLY the concept of: Energy transfer with liquid hydrogen and superconducting cable - hybrid energy transfer system Experimental tasks

- **To chose the proper superconductor**
- To develop and make superconducting cable with it
- To develop and produce liquid hydrogen cryogenic line with test facility
- To insert a cable inside cryogenic line and connect to cryogenics and electricity
- Bring to a site with liquid hydrogen
- Make tests...

MAJOR GOALS WERE TO UNDERSTAND:

What is MgB2, its manufacturability and how to work with it

How to make LH2 cryostat and current leads and to learn how to work with LH2 (see: "First in the world prototype of the hydrogen - superconducting energy transport system", Proceedings of ICEC 24-ICMC 2012, Fukuoka, Japan, May 2012, in press)

To get the first experimental data about hybrid energy transport systems (HETL)

Superconductor's choice

Type - Superconducting technology	Basic material, T _c	Cryogen and its temperature	Prices US\$ per 1кА⋅м
LTS – metallurgy	NbTi - alloy ~ 10K	Liquid helium at 4.2 K and below	Up to 3-5\$ @ 4.2 K
LTS – metallurgy	Nb ₃ Sn – compound ~ 18 K	Helium up to 8-10 K and below	Up to 15\$ @ 4.2K
HTS 1 generation (Powder in tube – metallurgy)	Ceramic Bi ₂ Sr ₂ Ca _{n-1} Cu _n O _{2n+4} (Bi-2223,Bi-2212) ~90-110 K	Liquid nitrogen at 77 K and below (with other cryogens)	About 120-150\$ @ 77 K About 40-50\$ @ 20 K
HTS 2 generation (Long coated conductors - electronics)	Ceramic YBa ₂ Cu ₃ O _{7-d} ~90 K	Liquid nitrogen at 77 K and below (with other cryogens)	About 300-500\$ @ 77K About 80-150\$ @ 20K
Magnesium diboride - (Powder in tube – metallurgy)	MgB ₂ – compound ~39 K	Liquid hydrogen and below (with other cryogens)	About 5\$ @ 20 K

Magnesium diboride: now available, has high parameters (overall current density about 2-7.10⁴ A/cm² at LH₂ temperatures) and most important:

pretty_cheap!

EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 22, October/November 2012.

Superconductor's choice

Flat wire has been selected to use technology developed for HTS power cable made of BSCCO tapes

Basic tape: 3.65MM x0.65 MM MgB₂, Fe barrier, Ni matrix, Cu stabilizer Produced by Columbus superconductor , Genoa, Italy

Estimated: I_c (20 K, s.f.) ~520-540 A Good stability at 20 K

Data from: http://www.columbussuperconductors.com

Later we studied lc(T) for short wires – you could see our poster 2MPC-11 this morning

Cable: five tapes, two layers, total length 10 м, copper stabilization ~90 мм² for each layer

Insulation – 10 layers of Kapton, δ ~1 мм, estimated as enough for 20-40 κV

Superconductivity News FORUM, No. 22, October/November 2012.

The cable has been made with standard cable equipment with technologies similar to those used for HTS cables.

Details in: "First in the world prototype of the hydrogen - superconducting energy transport system", *Proceedings of ICEC 24-ICMC 2012*, Fukuoka, Japan, May 2012,

1- former; 2 – current carrying superconductors; 3 – outer tube of cryostat; 4 – current leads; 5 – inner tube of the cryostat; 6 – polyimide; 7 – layered super-insulation; 8 – current jumpers; 9 – liquid hydrogen storage tank; 10 – filling, pressure busting and drainage systems; 11 – level meter and temperature sensors; 12 – flexible liquid hydrogen 12 m transfer line; 13 – bayonet connectors \emptyset = 32 MM; 14 – drainage 4 m flexible line \emptyset =32 MM; 15 – jet nozzle \emptyset = 4 mm; 16 – drainage flexible line \emptyset =32 MM

Inner diameter 40 mm, outer 80 mm; Vacuum Super-Insulation; Four sections with safety diaphragms; Nozzles to regulate LH2 flow

CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 22, October/November 2012. Current leads Developed by MAI

1 – current pathway; 2 – insulating polyimide tube with outer bandages; 3 – load bearing support; 4 – connection of the joint with a cable; 5 – getter; 6 – measuring probes; 7 – connections of flexible copper bunches and superconductors; 8 – mounting part.

Ratings: ~3-4 KA and voltage ~20KV.

General view of the hybrid energy transport system

2LA-01, ASC - 2012, Oct. 2012, PortPand (Or), USA

Total cooling time ~380 s.

To cool the system it was used ~ 2.3 kg of LH_2 .

Estimated heat losses were below 10±2 W/m (good for LH₂), current lead losses at 2600 A~300 W.

Temperature at measurements were form 20 K to 26 K, pressures from 0.12 to 0.5 MPa

Temperatures variations along a cable from 0.2 K to 0.8 K depending on flow rate

LH2 flow from 10 g/s to 250 g/s.

19 of 24

Test results -Superconductivity

V-I characteristics at different temperatures

have been measured Data about critical current were obtained

Ic(T) dependence

Data from wire supplier and from measurements of short samples coincides well with cable's data.

- Liquid hydrogen cryogenic line with special current leads has been developed – <u>works well</u>
- MgB2 from Columbus Superconductor has a good manufacturability and could be used for industrial cable production.
- <u>Superconducting parameters are good as well</u>
- Developed, produced and tested <u>MgB2 superconducting</u> <u>cable</u> with 10 m length with currents ~ <u>2000-2600 A.</u>
- First hydrodynamic and superconducting data of the hybrid energy transport system has been obtained

- With LH₂ flow <u>250 g/s</u> the delivering power is <u>~31</u> <u>MW</u>.
- Superconducting cable at <u>2.5 κA</u> and 20 kV is able to deliver extra <u>50 MW</u>, so <u>80 MW</u> in total with only 5 tapes
- It is easy to add five or ten tapes more and we can increase electrical power to 100 – 150 MW and total power to 130 - 180 MW.
- Therefore, the energy transfer line tested is able to deliver energy flow more than 100 MW

energy transporting system

<u>The conception of hybrid energy</u> transport system <u>has been proved</u>

From this real experiment we can get data that permit to make evaluations and to plan the next developments.
Our nearest plans: longer <u>flexible</u> line, <u>high voltage test</u>, more hydrodynamic and superconducting data

^{24 of 2}/₄LA-01, ASC - 2012, Oct. 2012, Portland (Or), USA