Solid-State Optical Cryocoolers

Richard Epstein, ThermoDynamic Films, LLC Mansoor Sheik-Bahae, University of New Mexico Markus Hehlen, Los Alamos National Laboratory

Optical cryocooling is the coolest solid-state refrigerator

Has advantages over other cryocoolers

Almost ready for "real-world" applications.

Ytterbium-based Laser Cooling

• Anti-Stokes Fluorescence

Excited ytterbium atoms absorb energy from the solid and emit higher energy photons. This creates cooling.

2

Prediction:P. Pringsheim, Z. Physik 57 (1929).Theory:L. Landau, J. Phys. (Moscow) 10, (1946).Observation:R.I. Epstein, et.al. Nature, 377, 500 (1995) (Los Alamos, USA)

Ground State Manifold

Ideal cooling efficiency:

$$\eta_c = \frac{hv_f - hv}{hv} = \frac{\lambda}{\lambda_f} - 1$$

Fighting Background Absorption

$$\eta_c$$
; $\eta_{abs} \frac{hv_f}{hv} - 1 > 0$ for cooling

$$\eta_{abs} = \frac{\alpha_r(\nu)}{\alpha_r(\nu) + \alpha_b} = \frac{1}{1 + \alpha_b / \alpha_r(\nu)}$$

Competition between **resonant absorption** α_r And parasitic **background absorption** α_b

Resonant absorption: Converts ~ 1% of absorbed laser power into cooling heat lift Background absorption: Converts 100% of absorbed power into heat \bigcirc

Lower and Lower Temperatures

Best Cooling Material To Date

Plot of $\eta_{\rm C}$ for a Yb:YLF crystal Yb doping = 10% wt. Background absorption: $\alpha_{\rm b}$ = 2.0 x 10⁻⁴ cm⁻¹ Cooling measurements with 54 W laser tuned to 1020 nm

Origin of Background Absorption? Iron May be the Main Problem

7

Paths to Lower Temperatures

Iron may be removed by Chelation Assisted Solvent Extraction or by Electrochemical Purification

← Higher Quantum Efficiency

Paths to Higher Efficiencies

Lower pump energies allow higher efficiencies

104

Choose Active Ions and Crystal Hosts Ce Dy Ho Tm Er Yb Host ions phonon energy (cm⁻¹) Multi-phonon decays 10^{3} generate heat 6 now • 5 Tm:YLiF₄ 🥊 Yb:YLiF Tm:KPb₂Cl₅ Dy:KPb₂Cl₅ 102 3 5 6 Ion's energy of first excited state (cm⁻¹) ← Higher Cooling Efficiency

Photon energy shift is limited by thermal excitations

$$\eta_c \sim \frac{hv_f}{hv} - 1 \sim \frac{kT}{hv}$$

Dopant	Pump	Cooling
lon	Energy	Efficiency
Yb ³⁺	1.21 eV	~1.5%
Tm ³⁺	0.62 eV	~ 2.9%
Dy ³⁺	0.37 eV	~4.9%

Multidisciplinary Challenges

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

Roadmap for High-Efficiency RE-Based Optical Cryocoolers

Additionally – there have been major breakthroughs in cooling semiconductors by Prof. Qihua Xiong's group from Nanyang Technological Univ. in Singapore

Advantages Optical Cryocoolers

Solid-State

- **No vibrations**
- **Reliable no moving parts**
- Compact and low mass
- Novel thermal management Pump laser can be far from cooler head Waste fluorescence can be radiated away or recycled into electrical power
- No EMI
- Insensitive to strong magnetic fields

Initial Uses for Optical Cryocoolers

Ultra-stable frequency standards

no vibrations, T_{cooler} ~ 124K

Infrared cameras (space-based and terrestrial)

no vibrations, compact, reliable, T_{cooler} < 150K

Germanium-based gamma-ray spectrometers

no vibrations, T_{cooler} < 120K

Electron microscopes

no vibrations, $T_{cooler} \sim 160 K$

Low-noise amplifiers for antennas

low mass, $T_{cooler} < 120K$

Ultrastable Laser Cavity Frequency Standard

A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity

Kessler et al., Nature Photonics 6, 687-692 (2012)

Requires vibration-free cooling at 124 K

Active shield Passive shield Cooled mitrogen gas feeding lines Vitration isolation platform

Collaboration with Prof. Jun Ye (NIST)

IR Imaging from Space

Cryocoolers for IR cameras on satellites should produce <u>very</u> <u>little vibration</u> and be <u>extremely reliable</u>

MTI multi-thermal image of SF Bay

Optical Cryocoolers can Decrease Mission Weight

Lowest Mass for Space-Borne Coolers (including solar panels etc.)

Adapted from a study by Ball Aerospace & Technologies Corp. ¹⁶

Gamma-Ray Spectroscopy

High-Purity Gamma Ray Spectrometers have extremely high energy resolution at T<120K

But – the spectra are severely degraded by <u>vibrations and</u> <u>microphonics</u>.

Solid-state cryocooling could enable portable, high-energyresolution gamma-ray spectrometers.

The Essential Parts of an Optical Cryocooler

Very Little Cold Material

Rapid cool-down and low inertial

Building a General Prototype

Summing-up

Optical cryocooling can now achieve sub-100 K temperatures, and there are strategies for getting below LN2

Advantages: Solid-state cooling, no moving parts, no vibrations, low mass and compact.

Applications: Laser metrology IR detectors: Gamma-ray spectrometry Cold electronics.

If you have other ideas, let's talk!

Team

Prof. Mansoor Sheik-Bahae², Dr. Markus Hehlen⁵ Dr. Seth Melgaard^{2,3}, Dr. Denis Seletskiv⁴, Dr. Alex Albrecht²; Mohamed Ghasemkhani² R. E.¹ ¹ThermoDynamic Films LLC, Santa Fe, NM ²Univ. New Mexico, Dept. Phys. & Astron., Albuquerque, NM ³USAF, Res. Lab., Space Vehicles Directorate, Kirtland AFB, NM ⁴Univ. Konstanz, 78457 Konstanz, Germany ⁵Los Alamos National Laboratory, Los Alamos, NM

Funding: AFOSR, AFRL, DARPA, DOE

email me if you want some review papers

Richard Epstein, ThermoDynamic Films LLC, richard.epstein@gmail.com