National Aeronautics and Space Administration



#### Performance Testing of the Astro-H Flight Model 3-stage ADR

Peter Shirron

Key ADR team members: Mark Kimball, Michael DiPirro, Tom Bialas





NASA Goddard Space Flight Center

www.nasa.gov

# Astro-H Soft X-ray Spectrometer

#### •6x6 array of x-ray microcalorimeters cooled to 50 mK



# Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 ADR Driving Requirements

NDUCTIVITY NEWS FORUM (global edition) July 2014

- •ADR is used to cool the detectors to 50 mK
  - 0.25-0.40 µW of conducted heat (leads)
- ADR rejects heat to either:
  - Superfluid helium at <1.3 K</li>
    - •<0.23 mW average (4 year lifetime)</p>
  - Joule-Thomson cooler at ~4.5 K
    - 18 mW peak
- Detector housing stable to 1 mK (time scales of 02 sec to 10 min)
- 90% observing efficiency

#### Requires 3-stage ADR

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

#### Astro-H Cryogenic System

Dewar Main Shell, 300K



NASA/GSFC hardware

#### ADR Layout



IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

#### 2-Stage ADR

#### Stage 1:

- 270 g CPA
- 2 T, 2 amp magnet
- Stage 2:
- 150 g GLF \_
- 3 T, 2 amp magnet



Heat switches are active gas-gap

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 - ICMC2014, Enschede, July 2014



Stage 3:

magnet



Thermal strap to He tank

Thermal strap to JT

Heat switches are active gas-gap

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

#### Flight ADR, Detector and Dewar (April '14)



IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

#### Astro-H Cryogenic System

Dewar Main Shell, 300K







# Operation with Liquid Helium

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014

#### Recycling sequence

- Stage 1 and 2 are warmed to
  - ~10% above the He bath
  - HS1 and HS2 turned ON
- Stages 1 and 2 charge to full field (2 T and 3 T)
  - •HS2 is turned off
- Stage 2 cools Stage 1 (still at 2 T) to <0.8 K</li>
  - •HS1 is turned off
- Stage 1 is demagnetized to 50 mK, and Stage 2 to 0.5 K



### 2-Stage ADR Cycling

Recycle time <1 hour, including recovery time</li>

- Detector response stabilizes as detector and ADR components equilibrate

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

- Control setpoints are based on the He tank temperature (uses mounting plate T)
  - Control system automatically adjusts to conditions during flight



#### Stage 1 Hold

#### Hold time of 32 hours

- He bath at 1.25 K
- On orbit expect <1.15 K, giving a hold time of 38 hours

#### •Heat load is 1.14 µW

- Gives 84% heat absorption efficiency
- Best fit to standard demag curve gives salt temperature of 48 mK



#### **Temperature Stability**

# Required stability: 2.5 µK rms Actual: 0.37 µK rms



#### **Autonomous** Operation

Recycling is triggered by Stage 1 current < 5 mA</li>
Control system operates autonomously based on preset parameters and real-time conditions (He tank temperature)



#### Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 **2-Stage ADR Operation Summary**

| <ul> <li>With He tank at ~1.25 K</li> </ul>                                                                                      |         |        |
|----------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| <ul> <li>Heat load on S1 was 1.14 μW</li> </ul>                                                                                  |         |        |
| <ul> <li>Hold time at 50 mK is 32 hours</li> </ul>                                                                               |         |        |
| <ul> <li>Recycle time (and recovery) &lt;1 hour</li> </ul>                                                                       |         |        |
| <ul> <li>Demonstrated observing efficiency of &gt;97%</li> </ul>                                                                 |         |        |
| <ul> <li>Temperature stability &lt;1 µK rms</li> </ul>                                                                           |         |        |
| <ul> <li>Integrated heat flow to helium tank</li> <li>Hysteresis from S1 and S2 magnets</li> <li>HS1/HS2 getter power</li> </ul> | 2.19 J  | 4.61 J |
| <ul> <li>Heat from S2 salt pill</li> </ul>                                                                                       | 8.11 J  |        |
| – Total                                                                                                                          | 14.19 J |        |
| •Time average load to He tank is 0.120 mW                                                                                        |         |        |

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014

Requirement is <0.2 mW</li>

#### Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 Cryogen-Free Operation

- •3<sup>rd</sup> stage transfers heat to JT cooler
- •2<sup>nd</sup> stage maintains helium tank temperature
  - Builds up cooling capacity during hold time
- •1<sup>st</sup> stage cools detectors to 50 mK, rejects heat to 2<sup>nd</sup> stage



#### 3<sup>rd</sup> Stage Cycling

- •Cycle period ~21 minutes
- •Low temperature setpoint is continuously adjusted to match helium tank T

SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014

Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

- •Time average heat lift of 2-3 mW in range of 1.4-1.8 K
  - Helium tank parasitic load is ~0.6 mW
  - ADR internal heat generation is ~1.2 mW



IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014



 $\bigcirc$ 



# Full Cycle with He tank at 1.625 K

IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014

 S2 charges during S1 hold time

 $\sum$ 

 S1 is automatically recycled when current falls below 20 mA

40 minute recycle
11.0 hour hold
>94% observing efficiency



# Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 Starting Current at 50 mK

#### Starting current from 0.80 K and 2 A is consistently 100 mA



# Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

#### •He tank at 1.625 K

- S1 heat load =  $2.98 \mu W$
- Salt temperature = 46.31 mK



# DA Housing Stability

Required stability is 1 mK over time scales of 0.2 s – 10 min

- Brief periods in which fluctuation is ~2 mK
- With current detector performance, this is acceptable



#### Presentation given at ICEC25 – ICMC2014, Enschede, July 2014 Heat Flow to the JT Cooler

Cycling was adjusted to give max heat flow of 30 mW
 Maximum flow tolerable at nominal input power



#### Warm Start

•ADR must handle the case of a warm start

- He tank, ADR and detectors starting at 4.5 K
- May be necessary after catastrophic warmup
  - Due to loss of cryocooler operation for long period
  - Due to issues with guard vacuum

Control should be autonomous (i.e. no intervention via ground control)

#### **Cooldown from 4.5 K**

 $\bigcirc$ 



IEEE/CSC SUPERCONDUCTIVITY NEWS FORUM (global edition) July 2014 Presentation given at ICEC25 – ICMC2014, Enschede, July 2014

27

#### Summary

 ADR has demonstrated autonomous control in nominal operating modes

- 2-stage with helium, and 3-stage cryogen-free
- Warm start, automatic recycling
- 2-stage with helium
  - Hold times ~32 hours
  - Recycle times <1 hour</li>
  - Observing efficiency >97%
- •3-stage cryogen-free
  - Hold times typically ~11 hours
    - •Heat load dominated by HS1 and kevlar from He tank
  - Recycle times <45 minutes</li>
  - Observing efficiency >93%