

The Latest Trends of MOD REBCO Superconducting Coated Conductors in SWCC

SWCC SHOWA CABLE SYSTEMS CO., LTD. Tsutomu Koizumi

ISS 2014 Funabori Tokyo

Copyright © 2014 SWCC SHOWA CABLE SYSTEMS CO., LTD.

Co workers

SWCC Showa Cable Systems Co., Ltd.

- R. Hironaga, Y. Takahashi, K. Kimura,
- T. Nakamura, K. Takahashi, K. Shiohara,
- Y. Hikichi, M. Minowa,
- K. Adachi, T. Nakanishi, N. Mido,
- T. Hasegawa

Acknowledgement

3

This work was supported by @ ISTEC-SRL @ Japan Fine Ceramics Center @ Kyusyu University @ Tokai university

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO) as Materials & Power Applications of Coated Conductors.

Today's topics

Δ

1) Introduction

2) MOD REBCO coated conductor in SWCC.

- i) Development of in-house substrate for MOD.
- ii) Mass production of YBCO coated conductor.

3) Application of REBCO coated conductor in SWCC

i) Development of compact superconducting current lead.

ii) Development of High- T_c superconducting power cable.

Introduction

REBCO coated conductors have developed using the metalorganic deposition process including trifluoroacetates so called TFA-MOD method since 1999.

Moreover, we have used a reel-to-reel process for calcination process and batch-type furnace for crystallization process.

In 2008, we successfully developed 500m-class YBCO coated conductors which had the critical current values of 310 A/cm-width at 77 K in self field.

Moreover, we successfully developed a way for introducing artificial pinning centers and fabricated 100m-class REBCO with artificial pinning centers. We named "nPAD-YBCO[®]". nPAD-YBCO[®] means nano-Particle Artificial-pinning-center Distributed YBCO.

MOD REBCO coated conductor

6

Today's topics

7

1) Introduction

2) MOD REBCO coated conductor in SWCC.

- i) Development of in-house substrate for MOD.
- ii) Mass production of YBCO coated conductor.

3) Application of REBCO coated conductor in SWCC

i) Development of compact superconducting current lead.

ii) Development of High- T_c superconducting power cable.

100m-class YBCO CC using in-house substrate

8

Today's topics

9

1) Introduction

2) MOD REBCO coated conductor in SWCC.

- i) Development of in-house substrate for MOD.
- ii) Mass production of YBCO coated conductor.

3) Application of REBCO coated conductor in SWCC

- i) Development of compact superconducting current lead.
- ii) Development of High- T_c superconducting power cable.

or the Future

Production Results of 100m-class YBCO CC in 2014

We fabricated hundred pieces of 100m-long coated conductor. This yield was 80% more.

Today's topics

1) Introduction

2) MOD REBCO coated conductor in SWCC.

- i) Development of in-house substrate for MOD.
- ii) Mass production of YBCO coated conductor.

3) Application of REBCO coated conductor in SWCC

i) Development of compact superconducting current lead.

ii) Development of High- T_c superconducting power cable.

High T_c Superconducting current lead

SAP-74 K. Takahashi et. al.

Lineup of nPAD-YBCO[®] current leads

Parameters	250A class	500A class	1500A class
Rated Current (@77K,self field)	250A	500A	1500A
Temperature range (K)		77K-4.2K	
Heat leakage (@77K-4.2K)	≦ 0.03W/piece	≦ 0.06W/piece	≦ 0.15W/piece
Supporting case		GFRP	
Size (mm)	220L×14W×14T	220L×14W×14T	220L×42W×14T

nPAD-YBCO[®]: nano-Particle Artificial-pinning-center Distributed YBCO

InPAD-YBCO[®] current lead

In the case of used YBCO CC, we can not make a compact current lead. Because used many long tapes for overcome heart leakage dew to a YBCO CC was low I_c in a magnetic field.

However, in order to be able to develop nPAD-YBCO®, we successfully developed a compact current lead.

Angular dependence of critical current

Cooling cycle test of nPAD-YBCO[®] Current Lead

We carried out cooling cycle test for the 500A class current read.

The measurement of I_c carried out until 40 cycles every 10 cycles .

As this result, I_c and R_c of the current lead were not damage until 40 cycles.

Today's topics

1) Introduction

2) MOD REBCO coated conductor in SWCC.

- i) Development of in-house substrate for MOD.
- ii) Mass production of YBCO coated conductor.

3) Application of REBCO coated conductor in SWCC

- i) Development of compact superconducting current lead.
- ii) Development of High- T_c superconducting power cable.

I Development of REBCO Power Cable

Now, under several tests.

- ✓ We successfully developed in-house substrate.
- ✓ We fabricated hundred pieces of 100m-long coated conductor. This yield was 80% more.
- We successfully developed compact superconducting current lead using REBCO coated conductor.
- ✓ We started High- T_c superconducting power cable development.

Summary

Development of business plans toward commercialization

END