

Quench protection of DI-BSCCO coil

Sumitomo Electric Industries, Ltd. 2014/11/26 ISS2014 T. Yamaguchi*, E. Ueno, T. Kato, K. Hayashi Supported by Japan Science and Technology Agency (JST)

Outline

- Background
- ♦ Our work
- Experiment
 - ≻test coil
 - ➢ full-scale pole coil
- ♦ Summary

Premise

HTS wires have very slow normal zone propagation velocity.
 ⇒Hotspot easily occurs, resulting in the degradation.
 To prevent this, it is important to quickly reduce an operating current.

<u>Issue1</u>

A large superconducting motor in the 20 MW range will have a large inductance, so the coil and the wiring to have a huge withstand voltage.

Issue2

It is necessary to detect a quench at a higher voltage than an environmental noise without a degradation.

Purpose

It is needed that the relation between the current decay time constant and the quench detecting voltage without a degradation.

Our work

First, we made the test coil and investigated the condition without a degradation.

Second, we made the full-scale pole coil for a 20MW motor and investigated the condition without a degradation.

Armature coi	

Full-scale pole coil (Rotor coil)

An image of 20MW motor

Rated output	20 MW	
Rotating speed	90 rpm	
Efficiency	99%	
Torque density	56 kNm/m ³	
Number of HTS field coils	96 coils / 24 poles	
Amount of DI-BSCCO wire	307 km / 96 coils	
Number of total turns	96,000 turns	
Rated current	200 A at 37 Kelvin	
	Helium-neon gas mixture	
Cooling system	thermosyphon cooling and	
	Conduction cooling	

[Courtesy of Kawasaki Heavy Industries, Ltd.]

Outline

Specifications of test coil

Type of DI-BSCCO wire	Туре Н
Critical current of wire	about 180 A
Coil	Circular double pancake (Epoxy impregnated)
Number of stacked coil	4
Number of total turns	2000 turns
Maximum parallel magnetic field	4.2 T
Maximum perpendicular magnetic field	2.0 T
Inductance	0.4 H
Stored energy	8.2 kJ at 200A

Cooling path

The coil was cooled by a refrigerator.

Coils for experiment

Coil No	Ic of wire @77K s.f	n value @77K s.f
DPC#1	180.9	17.5
DPC#2	174.6	17.9
DPC#3	174.8	17.2
DPC#4	181.3	17.5

The upper and lower ends are as symmetric as possible

Experimental circuit for the test coil

Detection of a quench by a balance circuit
Detection time is 0.1 sec
Decay time constant are 4sec, 10sec, 20sec and 60sec.

DI-BSC

(1) measurement of initial I-V

(2) set of decay

time and

detecting voltage

(3) operating

current was kept

at 200 A

(4) rise the

Experimental method of the test coil

(1)Measurement of initial I-V curve at 33 K

(2)Set of the current decay time constant and quench detecting voltage

(3)The operating current is kept at 200 A at 35 K.

(4)The temperature of the coils is gradually raised to initiate quench.

(5)Measurement of I-V curve at 33 K and comparison with initial I-V curve. If the coil has no degradation, we rise the quench detecting voltage and carry out $(2)\sim(5)$.

It was repeated until the coil had degradation.

Results of test coil

Here, we shall show the temperature and the voltage of 0.04 V, 0.06V, 0.15 V and 0.16V.

4s-0.04V (No degradation)

Current & Temperature

Current & Voltage

4s-0.06V (No degradation)

Current & Temperature

Current & Voltage

4s-0.15V (No degradation)

Current & Temperature

Current & Voltage

4s-0.16V (Degradation)

Current & Temperature

Current & Voltage

Investigation of degraded part

It is estimated that degradation area resembled the painted area in above figure.

Discussion of degradation

A degradation of the wire was caused by stress induced by change in the thermal expansion coefficient as the temperature increased.

When the compressive strain is more than -0.25%, Ic/Ic0 is less than 95%.

When the thermal expansion is more than 0.25 %, the temperature is more than 260 K. \Rightarrow hotspot's temperature is more than 260 K, we estimate.

Specifications of the full-scale pole coil

Type of DI-BSCCO wire	ТуреНТі、ТуреНі
Critical current of wire	about 180A
Coil	Racetrack double pancake (Epoxy impregnated)
Number of stacked coil	4
Number of total turns	4000 turns
Maximum parallel magnetic field	5.7 T
Maximum perpendicular magnetic field	2.5 T (Round part)
	3.0 T (Straight part)
Inductance	15H
Stored energy	300kJ at 200A

Current lead

Cold head

Experimental circuit for the full-scale pole coil

Detection time is 0.1 sec

Reduction of the current by a dump resister

SUMITOMO E Decay time constant is 10sec, 20sec and 40sec

Experimental method of the full-scale pole coil

(1) measurement of initial I-V

(2) set of decay

time and

detecting voltage

(3) operating

current was kept

at 200 A

(1)Measurement of initial I-V curve at 27 K

(2)Set of the current decay time constant and quench detecting voltage

(3)The operating current is kept at 200 A.

(4)The temperature of the coils is gradually raised to initiate quench.

(5)Measurement of I-V curve at 27 K and comparison with initial I-V curve. If the coil has no degradation, we carry out (2)~(5). It was repeated until the coil had degradation.

Results of full-scale pole coil

20s-0.06V (No degradation)

Current & Temperature

Current & Voltage

40s-0.06V (Degradation)

Current & Temperature

Current & Voltage

Photograph after quench

We found the burnout in the part where perpendicular magnetic field was maximum.

Comparison of the results of test coil and those of full-scale pole coil

There is not great difference between the results of the test coil and those of the fullscale pole coil.

⇒This means that heat production rate in hotspot are similar.

⇒Quench protection for coil depends on heat production rate in the hotspot, but not on the size of coil.

Outline

Background

- Our work
- Experiment
 - ≻test coil
 - ≻full-scale pole coil

Summary

Summary

We investigated quench protection of DI-BSCCO coils (test coil and full-scale pole coil), and found the required relation between the detecting voltage and the decay time constant for coil protection.

The experiment of the test coil

When the current decay time constant was 4 sec, it can be protected even with a detecting voltage of 0.15 V, despite a significant heat production rate of 128 W.

Even when the heat production rate was high, DI-BSCCO coils showed very stable operation because of their homogeneity with respect to critical current and the good heat transfer between adjacent turns.

The experiment of the full-scale pole coil

The full-scale pole coil can be protected by conditions similar to those that protected the test coil.

This means that heat production rate in hotspot are similar.

Coil protection depended on the heat production rate in the hotspot, but not on the size of coil.