SA-22-INV 27th International Symposium on Superconductivity

Large scale applications of HTS in New Zealand

Stuart C Wimbush

Robinson Research Institute Victoria University of Wellington

\bigcirc

Large scale applications of HTS in New Zealand

- Coil-based
 - HTS MRI
 - Bench-top NMR
 - High-field (20 T) magnets
 - Flux pump (rotating machines)
 - Superconductor wire characterisation

- Cable-based
 - Commercial Roebel cabling
 - HTS transformer

HTS MRI project

- Demonstration that a YBCO-based MRI system can meet clinical requirements.
- HTS magnets have attractive features:
 - Cryogen-free operation.
 - Push-button ramping.
 - Fast recovery from power outages.
 - Mobile deployment.
- Short-term applications:
 - Human extremity MRI at 1.5 T.
 - Bench-top pre-clinical MRI at 3 T.
 - Research into low-field (hyperpolarized) MRI.

1.5 T HTS MRI magnet design

- Dimensions:
 - OD 500 mm x 470 mm long.
 - \varnothing 240 mm bore.
 - 120 mm DSV (50 ppm pk-pk).
 - 5 G line: 1.8 m axial \times 1.5 m radial.
- Superconductor:
 - Design optimised using measured $I_c(T, B, \theta)$.
 - 4.8 km AMSC Amperium® YBCO tape.
 - 1.5 T at 125 A coil current.
- Cooling:
 - Conduction cooled by pulse tube refrigerator.
 - Coil temperature 20 K.
 - $-\Delta T < 0.2$ K over all coils.
- Magnet designed to minimize eddy currents.

B J Parkinson, R Slade, M J D Mallett, and V Chamritski Development of a cryogen free 1.5 T YBCO HTS magnet for MRI IEEE Transactions on Applied Superconductivity 23, 4400405 (2013).

1.5 T HTS MRI magnet assembly

• Prior to wrapping with multilayer insulation.

1.5 T HTS MRI system components

Unshielded gradient coils

Passive shim cassette

Magnet with yoke removed

RF birdcage resonator

TE WHARE WANANGA D TE DPOKO O TE IKA A MAUI VICTORIA UNIVERSITY OF WELLINGTON

R A Slade, B J Parkinson, and R M Walsh Test results for a 1.5 T MRI system utilizing a cryogen-free YBCO magnet IEEE Transactions on Applied Superconductivity 24, 4400705 (2014).

1.5 T HTS MRI <u>unshielded</u> gradient coils

- Gradient coils provide spatial resolution and are typically shielded to prevent interaction with the magnet during pulsing.
- Potential benefits of unshielded gradient coils:
 - Greatly reduced power consumption.
 - Reduced gradient coil and shim heating.
 - Simpler construction.
 - Reduced magnet bore / reduction in HTS wire cost.
- Increase in heat load to 20 K cold mass
 - < 1 K increase in magnet coil temperature during full day of routine imaging.
- Variations in MR signal phase due to eddy currents in the magnet
 - Correct with standard pulse pre-emphasis techniques.

1.5 T HTS MRI passive shim cassette

• Passive shimming using up to 368 iron plates of varying thickness.

- Measurement decompose into spherical harmonics shim calculation construction.
 - Automated using custom software.
- Question over impact of screening currents in YBCO tape.

1.5 T HTS MRI shimming and homogeneity

Field map prior to shimming

Field map after three passive shim iterations with full set of active shims applied

- Scale in ppm relative to 1.5 T. Contours 100 ppm / 5 ppm.
- Successfully shimmed to 49 ppm pk-pk over \emptyset 115 mm sphere.
- Changes in homogeneity immediately following magnet ramp or thermal cycles are within the correction range of the active shims.

1.5 T HTS MRI field stability – NMR measurement

- HTS magnet operates in driven mode.
 - Magnet current stabilised to <1 ppm by Danfysik 854 power supply.
- Iron yoke temperature stabilised to within 0.1°C.
- Observed long term change in resonant frequency ≈1 ppm.
 - Could be further improved by feeding back NMR signal to power supply.
- Short term oscillations ~40 nT assessed by MR pulse sequences.

1.5 T HTS MRI imaging gallery

- 5 mm slice thickness offset 8 mm from magnet centre.
- Spin-echo sequence with TR = 300 ms, TE = 20 ms.
- Quadrature driven birdcage resonator for Tx & Rx (\varnothing 165 mm).
- No Faraday cage.

1.5 T HTS MRI imaging gallery

- 5 mm slice thickness.
- Spin-echo sequence with TR = 1000 ms, TE = 20 ms.
- Quadrature driven birdcage resonator for Tx & Rx (\varnothing 165 mm).
- No Faraday cage.

1.5 T HTS MRI imaging gallery

- 8 mm slice thickness offset 24 mm from magnet centre.
- Spin-echo sequence with TR = 500 ms, TE = 16 ms.
- Quadrature driven birdcage resonator for Tx & Rx (\varnothing 165 mm).

HTS MRI project summary

- Clinical-grade MRI is possible using a YBCO HTS magnet operating in driven mode.
- Future developments:
 - NMR field lock to improve field stability.
 - "Instant on" ramp and image capability.
 - Variable field imaging.
 - Transportable whole-body MRI (MgB₂).

Flux pump excitation of HTS coils

- No technology presently exists for making an HTS persistent joint.
 - HTS magnets need to be operated in driven mode.
- Current leads: $Q_{\text{lead}} = 40 \text{ mW/A}$ for each lead. 125 A = 10 W.
 - Usually the largest single heat load on the cryocooler.
- Cooling cost increases with current and stability requirements.

Magnet power supply

Cryocooler compressor

 $0.5 \times 0.5 \times 0.5 \text{ m}^3$

Example heat loads (W) on cooling system

Heat Ioad	Description	100 A 77 K	100 A 30 K	500 A 30 K
Q_{lead}	Current lead conduction and resistance	8	8	40
$Q_{\rm wall}$	Cryostat wall conduction and radiation	8	10	10
Q_{joint}	Ohmic dissipation at joints	0.1	0.1	2.0
	Total heat load	16.1	18.1	52.0
	Specific cooling factor	14.5	81.8	81.8
	Required cryocooler power	233	1480	4250

Flux pump principle of operation

- Inductively excite the coil without the need for current leads.
- Current accumulator zero resistance of a superconductor.
- Increasing current results from Faraday's law of induction.

HTS flux pump construction

- *Q* < 2 W total heat load at full field (130 A) factor 4.5 reduction.
 - Residual heat load due to "dynamic resistance" and magnetisation losses.
- Much reduced size, weight and power requirement.

HTS flux pump NMR field stability

- Free induction decay (FID) used to track the B_0 field change.
- Total variation over 1 hour: 30 ppm (60 μT) peak-to-peak.
- Short-term oscillation period ~25 s.
- Result of the available feedback resolution of the Hall probe.
- Improve with additional feedback such as a ²H lock channel.

R M Walsh, R Slade, D Pooke, and C Hoffmann Characterization of current stability in an HTS NMR system energized by an HTS flux pump IEEE Transactions on Applied Superconductivity 24, 4600805 (2014).

Axial flux pump exciter for a 55 kW HTS generator

- Project aims:
 - Develop the knowledge necessary to build a prototype HTS rotor, and demonstrate current excitation at 77 K and 1500 rpm.
 - Demonstrate a novel (axial) flux-pump current excitation concept.
 - Design a flux-pump exciter suitable for rotating machine implementation.
 - Requires effective operation across practical cryogenic gaps.
 - Design and test integrated rotating cryostat, exciter and coils.
 - Rotating cryostat and torque tube being built by Fabrum Solutions.

Flux pump current status

- Improved performance (achievable coil current) across the gap from radial to axial design.
- Further optimised using finite element modelling.
- Newest design maximises gap through minimisation of magnetic reluctance (field shaping).
 - Magnetic field at 16 mm separation expected to be similar to that of previous design at 1 mm.
 - Sufficient to pump across the cryostat wall.
- Improved pumping speed by faster rotation.

NZ provisional patent applied for (628556)

600 Hz

384 hz

192 Hz

96 Hz

48 Hz

Started R&D (at IRL) in 2004.Commercialised through GCS Ltd.

- Develop long-length automated Roebel cable manufacture from multiple wire suppliers (AMSC; SuperPower, Fujikura, STI).
- Characterise physical properties.
- Prove applications in high-current and/or ac machines:
 - 150 MW generator (Siemens).
 - 1 MVA transformer (Robinson Research Institute).
 - High-field magnets (CERN).

• Present designs are a compromise reflecting the wide range of available wire types.

R <u>Lso</u> L	2 mm cable	5 mm cable
Transposition length, 2L	90 mm	300 mm
Strand width, W _R	2.0 mm	5.0 mm
Crossover width, $W_{\rm X}$	1.7 mm	6.0 mm

4×5 mm in 40 mm 1×5 mm in 12 mm 10×2 mm in 40 mm 3×2 mm in 12 mm

Automated multi-strand punching machine

• Some smearing of soft coatings, minimal damage to edges (3–7%).

Roebel cabling – testing of punched strands

- Multiple approaches to testing:
 - Continuous scanning of remanent field.
 - Full wire transport measurement in liquid nitrogen bath.
 - Punched strands are moisture sensitive.
 - Heat in dry nitrogen only.
 - Short sample measurement (e.g. transposition section).

Spiral racetrack former for testing strands up to 30 m

N J Long, R A Badcock, K Hamilton, A Wright, Z Jiang, and L S Lakshmi Development of YBCO Roebel cables for high current transport and low AC loss applications Journal of Physics: Conference Series 234, 022021 (2010).

40

50

Roebel cabling – winding

- Long length registration of crossovers.
 - Need high precision for each transposition length in the punching process.
 - Need tension control on strands in winding.
- Measured I_c is close to expected I_c .
 - For short length cables accurate $I_{\rm c}$ measurement is difficult.
 - There are strong self-field effects that must be accounted for.

Example I_c measurement of assembled cables at 77 K

Cable	Cable I _c (A)				
architecture	Σ Strands	Calculated	Measured		
5/2	252	220	203		
9/2	426	339	319		
9/2	426	359	342		
15/5	1454	1033	1100		
15/5	1616	1109	1010		
15/5	2093	1372	1410		

Automated planetary winding machines

Roebel cabling – perspectives

- Manufacturing process in place for long lengths, supplier neutral.
 - Cabling demonstrated with wire from AMSC, SuperPower, Fujikura, STI.
- kA-class conductors (at 77 K) available.
 - Cables preserve tape $I_{\rm c}$ performance (~90%).
- Quality control is in hand.
 - Measuring magnetic correlation is relatively easy.
 - Measuring strand I_c is time consuming and adds risk.
- Cables up to 25 metres (15/5) delivered to customers.
 - Cables up to 40 metres wound successfully.
- Cost ultimately dominated by wire cost.
- AC loss well characterised (not discussed here).
- Demonstration in applications underway.

Roebel cable ready for testing at Siemens Corporate Technology

1 MVA grid-connected HTS transformer

• Project partners

- Robinson Research Institute (development)
- PB Power (project management)
- Vector & North Power (network owners)
- ETEL & Wilson Transformer (manufacturers)
- HTS-110 (coil winding)
- Fabrum Solutions (cryostats)
- Absolut System (cryogenics)
- Project goals
 - Apply Roebel cable in ac power systems.
 - Design a robust cooling system for HTS transformers.
 - Demonstrate behaviour of a grid-connected HTS system.

N Glasson, M Staines, R Buckley, M Pannu, and S Kalsi Development of a 1 MVA 3-phase superconducting transformer using Roebel cable IEEE Transactions on Applied Superconductivity 21, 1393 (2011).

HTS transformer – design parameters

- 3-phase, 1 MVA rating, 70 K (LN₂).
- LV winding (Star connection):
 - 415 V, 1389 A rms (1964 A peak).
 - 19.6 m (20 turns) of GCS 15/5 Roebel cable single layer solenoid coil, strands not insulated.
 - Glass fibre reinforced polymer former.
 - Direct liquid nitrogen contact with the cable.
- HV winding (Delta connection):
 - 11 kV, 30.3 A rms.
 - 980 m (918 turns) of SuperPower 4 mm 2G tape in 24 double pancake coils, kapton wrap.
 - No encapsulation:
 - Maximise heat transfer.
 - Maintain HV withstand voltage.

M Staines, N Glasson, M Pannu, K P Thakur, R Badcock, N Allpress, P D'Souza, and E Talantsev The development of a Roebel cable based 1 MVA HTS transformer Superconductor Science and Technology 25, 014002 (2012).

1 MVA HTS transformer cooling system

- Sized to provide 1100 W cooling power, with maximum return temperature from the transformer of 70 K. *Heat load (W) on cooling system*
- Two systems run in parallel:
 - Subcooler using vacuum-pumped bulk nitrogen
 - Confirmed by experiment to provide 1200 W at 70 K.
 - Cryocoolers
 - Up to three GM cryocoolers each providing 500 W at 70 K.
 - Allows for removal for servicing without system warmup.

N D Glasson, M Staines, Z Jiang, and N Allpress Verification testing for a 1 MVA 3-phase demonstration transformer using 2G-HTS Roebel cable IEEE Transactions on Applied Superconductivity 23, 5500206 (2013).

HTS transformer efficiency

- 1 MVA transformer Minimum Energy Performance Standard
 - 99.27% efficient at half rated load (equates to 3.6 kW loss).
- To match this loss a 1 MVA HTS transformer can have no more than 120 W dissipation in the cryogenic environment.
- Electrical efficiency: 99.95% at full load; 99.997% at half load.
- Accounting for cooling (30:1): 98.6% at full load; 99.91% at half load.
- Cost: ~\$40,000.

N D Glasson, M Staines, Z Jiang, and N Allpress Verification testing for a 1 MVA 3-phase demonstration transformer using 2G-HTS Roebel cable IEEE Transactions on Applied Superconductivity 23, 5500206 (2013).

HTS transformer – scale-up to 40 MVA?

- Conventional 40 MVA transformer losses: 150 kW.
 - 99.6% efficient at full load.
- Translates to a 5 kW dissipation limit in the cryostat.
- Cryostat and current lead losses are little changed.
- We expect a sub-proportional increase in ac loss:
 - Current in the low voltage winding increases by only 50%.
 - Conductor length per turn increases by 260%, but most of the loss is concentrated in the end turns of the windings.
 - ac loss can be further reduced by lowering the operating temperature to 65 K.
- ac loss modelling, validated on the 1 MVA transformer, is underway to quantify the projected loss.
- Using Roebel cable, ac loss is not a fundamental obstacle to HTS transformer commercialisation.

- Clinical-grade MRI is possible using an HTS magnet in driven mode.
- The flux pump can provide low heat leak excitation of HTS coils.
- High-current, low ac-loss Roebel cable is commercially viable.
- ac loss is no impediment to HTS transformer commercialisation.
- Biggest issue affecting all projects is the cost of the wire.

