

Magnetic characterization of coated conductors

M. Eisterer

Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Vienna, Austria

CCA 2014, Jeju, December 3rd 2014

Outline

- Motivation
- Low temperature, in-field high resolution scans: magnetic granularity
- Calculation of the local currents from magnetic field maps: Inversion
 - Reel-to-reel mapping as a quality control tool
 - Tapes on magnetic substrates

Acknowledgments

Mayraluna Lao

Collaborations: IFW Dresden, Oxolutia, THEVA

The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement no NMPLA-2012-280432.

Motivation

Transport measurements:

- + Direct assessment of I_c
- High currents may be problematic (sample heating...)
- High electric field
- No information about limitations, inhomogeneities...

Scanning Hall probe measurements:

- + Assessment of inhomogeneities
- + Small electric field
- + Easy sample handling
- + No sample heating
- Modelling necessary to obtain I_c
- Slow

- Magnetic granularity
- J_c anisotropy resulting from the aspect ration of the grains
 - 64% Larger longitudinacurrent than transverse current.
 - Longitudinal \rightarrow larger grain dimension
 - Transversal \rightarrow smaller grain dimension

Peaks in the remnant field profile change with temperature. \rightarrow Size of clusters of well connected superconducting grains changes.

Calculation of the local current density from Hall maps **INVERSION**

 \mathcal{O}

Influence of geometry

Hall map

- Lower currents at the peak of the field profile (artefact?)
- Lower currents at the diagonals near the edges (expected)

- Current grid in general does not fit the sample geometry!
- Calculated current is an 'integral' over the current density between to measurement point.

Fine grid is favorable.

Inversion of ideal field profile.

 \mathcal{O}

Transverse field profile at a homogeneous position

d=850 μm, B_{bg}=28.2 mT

15

The calculated current $I = \sum_{k} I_k$ decreased from 101% of $I^{as} = \int J dF$ (case 1) to 90 % for case 2.

 \mathcal{D}

Larger gap between Hall probe and superconducing layer: 1mm

1 cm wide conductor, 1 mm measurement grid, 1mm gap

The current grid should not be smaller than the gap.

Few singificant points, current is lower by 8%

REEL TO REEL MAPPING AS A QUALITY CONTROL TOOL

Grid is shifted along the data, only central currents are recorded.

CORRECTION FOR MAGNETIC SUBSTRATES

 \mathcal{O}

Magnetic substrates

The superconductor magnetizes a magnetic substrate.

- \rightarrow The field of the substrates adds to the Hall signal.
- \rightarrow Overestimation of the critical currents.

Iterative approach: Measured local magnetic field map B_H

Inversion (J_c)

Calculation of the field in the substrate and according magnetization M

Calculation of the field resulting from M at measurement grid

Subtraction from B_{H}

Fast convergence

Conclusions

- Scanning Hall probe measurements are a powerful tool for the investigation of magnetic granularity
- The measurement grid has to be chosen carefully (gap size, position)
- Discontinuities in the current distribution can be easily "overlooked".
- The inversion of data obtained from reel-to-reel system needs additional assumptions.
- Non-hysteretic magnetic substrates do not pose a serious problem.

