

Superconducting Magnet Division_

High Field HTS SMES Coil

R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014

Superconducting Magnet Division

From our sponsor:

... ARPA-E's mission is to catalyze and accelerate the creation of transformational energy technologies by making high-risk, high-reward investments in their early stages of development

This presentation summarizes an aggressive R&D where

We <u>demonstrated</u> a higher field and a higher operating temperature energy storage coil than <u>proposed</u> before ...

➤ 12.5 T SMES coil operating at 27 K

Project Goal:

- Competitive, fast response, grid-scale MWh superconducting magnet energy storage (SMES) system
 <u>Team member major contributions:</u>
 - > ABB: Power electronics, Lead
 - > BNL: SMES coil and Superconducting switch
 - > SP: 2G HTS manufacture and improved production
 - > UH: Wire manufacturing process research

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jeju S. Korea Dec. 1, 2014 3

Technology for High field HTS SMES coil

– Design, construction and test results

- □ For economic viability of a large scale energy storage system, cost of coated conductor must come down significantly (smart designs can help)
- □ The technology developed could already be applied to special purpose storage system and other applications

Superconducting Magnet Division_

- High Temperature Option (~65 K): Saves on cryogenics (Field ~2.5 T)
- High Field (~25 T) Option: Saves on Conductor (Temperature ~4 K)

Previous attempts:

LTS: up to ~5 T HTS: few Tesla (high temp. to save on cryo)

Our analysis on HTS option:

Presently conductor cost dominates the cryogenic cost by an order of magnitude

High field HTS could be game changer:

- ✓ Very high fields: 25-30 T (E α B²)
 - Only with HTS (<u>high risk, high reward</u>)

➤ Also: A medium field and medium temperature option (a new record <u>12.5T@27K</u> demonstrated, thanks to arpa-e)
High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 <u>Jejn</u> S. Korea Dec. 1, 2014 5

Superconducting Magnet Division_ The Basic Demo Module

Aggressive parameters:

Field: 25 T@4 K (more than ever)

Bore: 100 mm (large)

Hoop Stresses: 400 MPa (>2X)

Conductor: ReBCO (evolving)

High Field HTS SMES Coil R. Gupta, ..., BNL

NL CCA2014

)14 Jeju S. Korea

Dec. 1, 2014

6

Conductor - ReBCO Tape

Superconducting

Magnet Division

HTS tape: angular dependence

CHANGING

Measurements at NHMFL (earlier sample)

12 mm wide ReBCO tape with high strength hastelloy substrate

High Field HTS SMES Coil R. Gupta, ..., BNL

CCA2014

4 Jeju S. Korea

Dec. 1, 2014

7

- A torus would consist of a large number of solenoid module
- Field becomes parallel => less amount of conductor required

High Field HTS SMES Coil R. Gupta, ..., BNL

CCA2014 Jeju S. Korea

8

Dec. 1, 2014

Large Scale SMES <u>Concept</u> (2)

Superconducting Magnet Division_

GJ scale GRID storage system that can fit in a room!

Moreover, a small B₁ (<0.5 T) for a large B₁ (30 T) means a major reduction in conductor cost (~1/5 with an optimized HTS)

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jejn S. Korea Dec. 1, 2014 9

Superconducting Magnet Division

Design Parameters of BNL Demonstration Coil

-		
Stored Energy	1.7	MJ
Currrent	700	Amperes
Inductance	7	Henry
Maximum Field	25	Tesla
Operating Temperature	4.2	Kelvin
Overall Ramp Rate	1.2	Amp/sec
Number of Inner Pancakes	28	
Number of Outer Pancakes	18	
Total Number of Pancakes	46	
Inner dia of Inner Pancake	102	mm
Outer dia of Inner Pancake	194	mm
Inner dia of Outer Pancake	223	mm
Outer dia of Outer Pancake	303	mm
Intermediate Support	13	mm
Outer Support	7	mm
Width of Double Pancake	26	mm

High field and big radius create large stresses (~400 MPa)

High Field HTS SMES Coil R. Gupta, ..., BNL

CCA2014

4 Jeju

S. Korea Dec. 1, 2014

ATTOINE LABORATOR

Superconducting Magnet Division

Grading to Optimize Magnetic and Mechanical Design

Superconducting Magnet Division_

HTS Single Pancake

Outer: ~210 meter 12 mm tape (258 turns)

- High strength HTS tape, co-wound with SS tape (for insulation and added strength)
- Thickness of SS tape and copper on HTS adjusted to optimize the performance

Superconducting Magnet Division_

Two Pancakes Connected with Spiral Splice Joint

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jeju S. Korea Dec. 1, 2014 14

Inner and Outer Coils Assembled

Superconducting Magnet Division_

Inner Coil (102 mm id, 194 mm od) 28 pancakes

Outer Coil (223 mm id, 303 mm od) 18 pancakes

Total: 46 pancakes

High Field HTS SMES Coil R. Gupta, ..., BNL

BNL CC

CCA2014 Jeju S. Korea

Dec. 1, 2014

15

Superconducting

Magnet Division

Coils, Test Fixtures and Support Structure

Pancake coils: inner and outer 77 K Test Fixture for outer

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jeju S. Korea Dec. 1, 2014 16

Superconducting Magnet Division

Inner and Outer Coils

Inner (in support tube)Outer (prior to support tube)High Field HTS SMES CoilR. Gupta, ..., BNLCCA2014JejuS. KoreaDec. 1, 201417

Superconducting

Magnet Division

Final Assembly

Outer inserted	over inner coil	SMES	coil in	iron lamina [.]	tions
ligh Field HTS SMES Coil	R. Gupta,, BNL	CCA2014 Jeju	S. Korea	Dec. 1, 2014	18

Test Results

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jeju S. Korea Dec. 1, 2014 19

Superconducting

Magnet Division_

77 K Test of a Series of Double Pancakes (inner)

Superconducting

Magnet Division_

77 K Test of a Series of Double Pancakes (outer)

Two pancakes powered in series

Single pancakes powered alone

Higher I_c in coil at 77K, however, doesn't necessarily translate in to a higher I_c at 4K (present conductor)

21

Dec. 1, 2014

Double Pancake 77 K Test

Superconducting

Magnet Division

HTS SMES Coil High Field Tests

Superconducting **Magnet Division**

High Field HTS SMES Coil R. Gupta, ..., BNL

CCA2014

S. Korea

Dec. 1, 2014

12 Pancake Coil Test

Superconducting

Magnet Division

- Energy (~125 kJ) extracted and dumped in the external resistor.
- 77 K re-test (after quench) showed that the coil remained healthy.

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jejn S. Korea Dec. 1, 2014 25

Superconducting

Magnet Division

Preparation for the Final Test

S. Korea

Dec. 1, 2014

26

High Field HTS SMES Coil R. Gupta, ..., BNL

CCA2014

Jeju

Superconducting Magnet Division_

Status of ARPA-E SMES Coil

- The design goal was: 1.7 MJ at ~700 A with 25 T at 4 K.
- We tested the unit at several temperatures between 20-80 K, including the 350 Amp (12.5 T) test at 27 K.
- During one such test, the system tripped due to a data entry error at ~165 A – well below the earlier magnet test current.
- This trip resulted in damage to a few current leads in the inner coil. It appears that there was arcing, perhaps during shut-off.
- Since the test was not limited by the field performance, the SMES coil still has the potential to reach higher field after repair.

Superconducting

Magnet Division.

Quench Protection

High Field HTS SMES Coil R. Gupta, ..., BNL CCA2014 Jeju S. Korea Dec. 1, 2014 29

Superconducting **Magnet Division**

BNL HTS Quench Protection Strategy

Jeju

S. Korea

A multi-pronged strategy developed and used at BNL in various HTS programs:

- > Detect early and react fast with an advance quench protection system
- **1.** Developed an advanced low-noise electronics and noise cancellation scheme to detect pre-quench voltage (phase) where HTS coils can operate safely
- 2. Fast energy extraction with electronics to handle high isolation voltage (>1kV)
- **3.** Use inductively coupled copper discs for fast energy extraction

BNL

Drawback: additional energy loss during charging and discharging

R. Gupta, ...,

High Field HTS SMES Coil

30

Copper Discs for Energy Extraction

CHANGING WHAT'S POSSIBLE

Superconducting

Magnet Division

Superconducting Magnet Division

- Even though we didn't reach the aggressive design goal of 25 T, in a big aperture (~100 mm) superconducting magnet with large hoop stresses (~400 MPa) in the first attempt, we did learn several things in the process beside creating new records.
- This provided a significant experience in using a large amount of coated conductor (over 6 km of 12 mm wide tape) in a demanding 4K, high field and a high stress application.
- Demonstration of a 12.5 T SMES coil at 27 K is a promising application of the coated conductor. The earlier most ambitious proposal was for 11 T at 20 K by Chubu Electric and Furukawa.
- The experience and technologies developed should also be useful in other applications, such as in NMR, ADMX, accelerators, etc.