

EUROPEAN SPALLATION SOURCE

ESS Cryogenic System Process Design

Philipp Arnold Section Leader Cryogenics

www.europeanspallationsource.se CEC – ICMC 2015 June 29, 2015

1) System Overview

- 2) Accelerator Load and its Cryoplant
- 3) Target Moderator Load and its Cryoplant
- 4) Helium Management and Storage
- 5) Reliability and Availability

6) Energy

(1) System overview

EUROPEAN

SPALLATION

ess

1) System Overview

2) Accelerator Load and its Cryoplant

- 3) Target Moderator Load and its Cryoplant
- 4) Helium Management and Storage
- 5) Reliability and Availability

6) Energy

(2.1) The Accelerator cryogenic setup

EUROPEAN

SPALLATION

ess

(2.1) The Accelerator cryogenic setup

EUROPEAN SPALLATION SOURCE

9

EUROPEAN SPALLATION SOURCE

(2.3) The Accelerator cryoplant dutyspec

Туре	Temperature range	Max. load Stage 1	Max. load Stage 2
Static and dynamic load in CMs	2 K	1850 W	2230 W
Recuperators and CDS load	2 – 4 K	630 W	830 W
Thermal shields	33 – 53 K	8 550 W	11 380 W
Coupler cooling	4.5 – 300 K	6.8 g/s	9.0 g/s

(2.4) The Accelerator cryogenic load

EUROPEAN SPALLATION SOURCE

ACCP 2K heat load vs number of installed CMs

(2.5) The Accelerator cryoplant process

300 K	Compressor skids with 3 identical screws	
115 K	VFD for SP \rightarrow MP and LP \rightarrow MP	
70 K		
53 K	Thermal shield ~43K	
33 K	Thermal Shield +5K	
24 K	6 turbo expanders	
9 K	3 cold turbo compressors	
6 K		
4.5 K	Connection to 20 m ³ tank	

EUROPEAN SPALLATION

1) System Overview

2) Accelerator Load and its Cryoplant

3) Target Moderator Load and its Cryoplant

- 4) Helium Management and Storage
- 5) Reliability and Availability

6) Energy

(3.1) The Target Monolith

Neutron beam extraction

Target wheel 🗸

Moderator and reflector plugs

Proton beam window

Neutron beam windows

(3.2) The Target Monolith inside

(3.3) Moderator-Reflector system

(3.4) The Target cryogenic load

EUROPEAN SPALLATION SOURCE

TMCP 15-20K heat load vs. beam power

Beam power, MW

> EUROPEAN SPALLATION

(3.5) The Target Moderator cryoplant process (proposed by ESS)

1) System Overview

- 2) Accelerator Load and its Cryoplant
- 3) Target Moderator Load and its Cryoplant
- 4) Helium Management and Storage
- 5) Reliability and Availability

6) Energy

(4.1) Where sits the helium

1) ACCP: Over 2000 kg in Cryomodules and distribution system

2) TMCP: Over 350 kg in Cryotransferline between helium and hydrogen box

2 x 335 m x 4"

3) TICP: About 600 kg in open loop system for neutron instruments

(4.2) Helium storage

- 19 x 67 m³
- Theoretically up to 3.5 tons
- Pressure restrictions for TICP and TMCP
- Effectively ~ 3 tons
- 2) Liquid helium storage tank
 - 20 m³
 - When filled to 80% another 2 tons
 - Used as "2nd fill" and help in transient modes (cool-down, pump-down)
- 3) Impure high pressure tanks or bundles
 - 12 m³
 - Nearly 300 kg
 - Used as buffer in recovery system

- 1) System Overview
- 2) Accelerator Load and its Cryoplant
- 3) Target Moderator Load and its Cryoplant
- 4) Helium Management and Storage
- 5) Reliability and Availability
- 6) Energy

(5.1) Definitions

SPALLATION

Kinetic Experiments

Flux Integrated **Experiments**

A reliability of at least 90% should be provided for the duration of the measurement.

The measurement will be considered failed when the beam power is reduced to less than 50% of the scheduled power for more than 1/10th of the measurement length.

For the duration of the experiment at least 90% of the experiments should have at least 85% of beam availability and on average more than 80% of the scheduled beam power.

The beam will be considered unavailable when its power is less than 50% of its scheduled power for more than one minute.

At least 90% of the users should receive a neutron beam that will allow them to execute the full scope of their experiments

(5.2) Anticipated failure rates

EUROPEAN SPALLATI<u>ON</u>

SOURCE

(5.3) Backup compressor system

- 1) System Overview
- 2) Accelerator Load and its Cryoplant
- 3) Target Moderator Load and its Cryoplant
- 4) Helium Management and Storage
- 5) Reliability and Availability

6) Energy

(6.1) Energy high level goals

EUROPEAN SPALLATION SOURCE

(6.2) Heat recovery

- No elevated oil or helium temperatures out of compressor suppliers specs
- More efficient heat exchangers, especially oil coolers
- Dedicated cooling water circuit for cryoplant
- Cooling function has priority over heat recovery

(6.3) Energy efficiency and sustainability

EUROPEAN SPALLATION SOURCE

- Focus on process design and optimization
- Good match between plant and load by staging, dual equipment, VFDs for low pressure machines
- Focus on turn-down scenarios
- Incentive OPEX approach in ACCP and TMCP tender evaluation and contracts as well
- As much as possible helium recovery

Conclusions

- The conceptual design of the cryogenic system at ESS is finished
- One cryoplant is ordered, one out for quote, one to 90% specified → ESS is rolling
- High level goals in terms of energy efficiency and sustainability can be met
- Continued work on meeting reliability and availability requirements