

Field and temperature scaling of the critical current density in commercial REBCO coated conductors

Carmine SENATORE, Marco BONURA, Miloslav KULICH, Giorgio MONDONICO, Christian BARTH

Département de Physique de la Matière Condensée & Département de Physique Appliquée Université de Genève, Switzerland

Outline

- Research on coated conductors @ UNIGE
- Overview of the industrial REBCO CCs
- J_c(B,T, θ) surface, scaling relations for the temperature and field dependences
- Critical current under mechanical loads
- Thermo-physical properties: thermal conductivity and normal zone propagation velocity

Towards 20 Tesla accelerator magnets for HEP

Today : the record collision energy in LHC is 8 TeV

Scope : Future Circular Colliders, collision energy up to 100 TeV Shed light on the physics beyond the Standard Model

Towards all-superconducting **30** T-class solenoidal magnets

Funded by

FNSNF FONDS NATION

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Today : commercial systems with $B_{max} = 23.5 T @ T = 2.2K$

Scope : high resolution NMR spectrometers, high field laboratory magnets

Overview of the industrial CCs

	MOD	PLD	PLD	RCE	PLD	MOCVD
	Dip-coating			o-evaporation		nemical vapor
						\mathbf{A}
	Superconductor [®]	BRUKER	🗲 Fujikura	SUNAN	SuperOx	SuperPower Inc. A Furukawa Company
RABiTS	\checkmark					
IBAD		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
physical deposition		\checkmark	\checkmark	✓	\checkmark	
chemical deposition	\checkmark					\checkmark
in situ <i>process</i>		\checkmark	\checkmark		\checkmark	\checkmark
ex situ <i>process</i>	 			\checkmark		
substrate	NiW 75 μm	SS 100 μm	Hastelloy 75 μm	Hastelloy 60 μm	Hastelloy 60 µm	Hastelloy 50 μm
thermal stabilization	Laminated (2 sides)	Electroplated	Laminated (1 side)	Electroplated	Electroplated	Electroplated

Performance overview: $J_c(s.f.,77K)$ vs. $J_c^{\perp}(19T,4.2K)$

5

Practical characterization of REBCO CCs Applications @ low temperature / high fields

- *J_c* depends strongly on the orientation of the tape wrt the magnetic field
- B_{c2} at low temperature is ~100 T
- The operating temperature margin is 30 40 K

 \rightarrow Thermo-physical properties, c(T,B) & κ (T,B), are essential

• The response of the tape to mechanical loads depends on its architecture (electromechanical properties)

Transport and magnetic measurements of $J_c(B,T,\theta)$

Only a limited portion of the critical surface is practically accessible from transport measurements

Magnetization measurements are the tool to explore a larger region of the critical surface

Temperature dependence of J_c

 $\theta = \mathbf{0}^{\bullet} - \mathbf{B} / / \mathbf{c}$

Temperature scaling relation

$$J_{c}(B,T) = J_{c}(B,T=0)e^{-\frac{T}{T^{*}}} \Rightarrow \frac{J_{c}(B,T_{1})}{J_{c}(B,T_{2})} = e^{-\frac{T_{1}-T_{2}}{T^{*}}}$$

Temperature dependence of *J_c* **: 3 orientations**

The temperature scaling relation $J_c(B,T) = J_c(B,T=0)e^{-\frac{1}{\tau^*}}$ holds also at 45° and 90° for T up to 40 K

T* ranges between 15 K and 35 K – it depends on field and orientation

Temperature scaling parameter T*

T* ranges between 15K and 35K – it depends on field and orientation Lower T* values \Rightarrow faster decrease of I_c with increasing T

Field dependence of J_c

Field scaling law $J_c(B,T) = J_c(B=0,T)B^{-\alpha}$

α is almost constant below 40 K, the value varies between 0.5 and 0.8

Field dependence of J_c : 3 orientations

Field scaling parameter α

 \bigcirc

Higher α values \Rightarrow faster decrease of I_c with increasing B

I_c(T) angular dependence: SuperPower with AP

 $T < 30 \ K \implies J_{c}(0^{\circ}) < J_{c}(45^{\circ}) < J_{c}(90^{\circ})$ $30 \ K < T < 40 \ K \implies J_{c}(0^{\circ}) > J_{c}(45^{\circ}) \ \text{and} \ J_{c}(0^{\circ}) < J_{c}(90^{\circ})$ $T > 40 \ K \implies J_{c}(0^{\circ}) > J_{c}(45^{\circ}) > J_{c}(90^{\circ})$

Temperature and field scaling of J_c

For temperatures below ~50 K, critical surface J_c(B,T) in the form

$$J_c(B,T) = J_c(B=0,T=0)B^{-\alpha}e^{-\frac{T}{T^{\alpha}}}$$

Scaling relation verified for θ = 0°, 45° and 90°, but T* and α depend on θ

Critical current depends on

- temperature
- field intensity
- field orientation
- mechanical loads

I_c vs. axial strain: measurement method

Walters spring (WASP)

- Sample is soldered to Ti-alloy spring
- Turning the spring strains the sample
 - calibrated with strain gauges glued to the sample
 - sample is pre-strained upon cooldown due to thermal expansion mismatch
 - pre-strain is determined & subtracted
- 1m-long sample
 - precise
 - low noise
 - \rightarrow low I_c criteria
 - \rightarrow get n values

Dependence of I_c on axial strain @ 4.2 K, 19 T

Fujikura & SuperOx: delamination \rightarrow steps \rightarrow lower ε_{irr}

C. Barth, G. Mondonico and CS, SuST 28 (2015) 045011

Stress vs. strain measurements @ 4.2 K

C. Barth, G. Mondonico and CS, SuST 28 (2015) 045011

Dependence of I_c on axial stress @ 4.2 K, 19 T

I_c vs. applied stress

n value vs. applied stress

- All samples have a very similar behaviour
- Very low stress effect → curves are flat in rev. region
- Irreversible limits σ_{irr} in 740 840 MPa range

C. Barth, G. Mondonico and CS, SuST 28 (2015) 045011

Thermo-physical properties $\rightarrow \rightarrow$

Thermal conductivity of REBCO CCs

Thermal conductivity is an essential parameter for QUENCH studies

 Longitudinal thermal conductivity in magnetic fields up to B=19 T
 B perpendicular & parallel to thermal current

• Transverse thermal conductivity

M. Bonura and CS, SuST 28 (2015) 025001 M. Bonura and CS, TASC 25 (2015) 6601304

Longitudinal thermal conductivity

		- T T T T T T T T T T T T T T T T T T T
$\kappa_{exp} - \sum_{i} \kappa_{i} S_{tot}$	$\int \mathbf{S}_{tot}$	$d n \alpha K_{Cu} - J(KKK_{Cu})$

Manufacturer	RRR _{Cu} [fit]	RRR _{Cu} [$ ho(T)]$	S _{Cu} /S _{tot}
AMSC	20	19	0.51
BHST	14	17	0.20
FUJIKURA	62	59	0.44
SUNAM	69	61	0.34
SUPEROX	13	14	0.27
SUPERPOWER	39	42	0.40

 κ (T,B=OT) can be estimated (±15%) from RRR_{cu} and S_{cu}/S_{tot}

Cu/non-Cu ratio and RRR_{Cu} determine the in-field variation of κ M. Bonura and CS, SuST 28 (2015) 025001

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015. Invited presentation 3A-WT-O1.1 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015

Normal zone propagation velocity

From the experimental κ , ρ , c, $J_c(T)$, NZPV is found to depend only on I_{op} following a power law

Summary - Main parameters at a glance

Summary - Main parameters at a glance

Conclusions

- Explored the $J_c(B,T,\theta,\sigma)$ surface for CCs from 6 manufacturers
- Scaling of J_c(B,T) with an exponential T dependence and a power-law B dependence
- Reconstruction of the critical surface possible with a minimum number of measurements
- Irreversible limit σ_{irr} under axial loads in 740 840 MPa range for all manufacturers
- Direct measurements of in-field thermal conductivity for quench propagation studies and calculation of the NZPV