

Deployable SQUID-based magnetic resonance imaging systems

Per Magnelind, Andrei Matlashov, Shaun Newman, Henrik Sandin, Robert Sedillo, Algis Urbaitis, Petr Volegov, and Michelle Espy

EUCAS, Sept. 9, 2015

LA-UR-15-26985

Outline

- Motivation
- Methods
- Modeling
- Results
- Outlook
- Summary

Single-average slice acquired inside a shielded room

LA-UR-15-26985

Motivation

Magnetic Resonance Imaging (MRI)

- best method for non-invasive imaging of soft tissue anatomy
- saves countless lives each year

Conventional (high-field) MRI

- only in large well-funded medical centers
- is not available in rural settings
- is not deployable to emergency situations or battlefield hospitals

Ultra-low field (ULF) MRI

- pulsed pre-polarization at < 0.3 T
- sensitive Superconducting Quantum Interference Device (SQUID) detection
- greatly relaxed homogeneity
- presence of non-magnetic metal is not an issue
- can be light and made portable

ULF-NMR: non-adiabatic switching of B_p

LA-UR-15-26985

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

per@lanl.gov

EST.1943

per@lanl.gov

Methods-NMR basics

ULF-NMR: non-adiabatic switching of B_p

LA-UR-15-26985

Methods—Gradients

Frequency encodingPhase encoding B_m G_x B_m G_x B_m G_x $B_0 - G_x \cdot x$ $B_0 + G_x \cdot x$ $\omega_L - \Delta \omega$ $\omega_L + \Delta \omega$ G_x determines
phase rotation

Image (spin density) obtained from 3-D inverse Fourier Transform

Methods—Pulse-sequence

3D Fourier spin-echo imaging sequence.

- *B*_p: pre-polarization field
 ≤100 mT, linearly ramped over 70 ms, then ramped to zero adiabatically during 20 ms.
- **B**_m: measurement field 190–200 μT (8.2–8.6 kHz).

G_x (readout):	≤248 µT/m	≤11 Hz/mm
G _z (phase, in-plane):	≤222 µT/m	≤9 Hz/mm
G _v (phase, depth):	≤47.6 µT/m	≤2 Hz/mm

Implemented in a custom LabView VI with a time-slot matrix interface.

Methods—Unshielded System

- 3 pairs of square Helmholtz coils cancel the Earth's magnetic field.
- Seven 37 mm 2nd-order gradiometers, 60 mm baseline.
- $B_{\rm m}$ (~200 µT) continuously on; power supply with a large capacitor.
- Battery-powered current generators for gradients and spin-flip.
- B_p (45–65 mT) was battery-powered and ramped down through banks of solid-state switches.

Hardware

- Manual ambient DC field compensation.
- A low-frequency dynamic cancellation system is being tested to enable automatic adjustments.
- Electronic compensation and software compensation have been tested and compared.
- In both cases it was possible to suppress noise lines from our NMR signals with a central Larmor frequency of 8.6 kHz.

Time (h)

Methods—Shielded System

Hardware

- Wall-powered field generation
- 2nd-order gradiometers, 90 mm diameter & baseline
- Sensors co-exist with 100 mT B_p
 - Pb-Bi shields
 - 2nd-feedback
 - Compensation

per@lanl.gov

10

SQUID signal, V

Methods— **B_and Compensation**

lamos

EST.1943

NATIONAL

Modeling—Parameters etc.

Eleven high-resolution (0.5×0.5×0.5 mm³) volumes describing content of a voxel Montreal Neurological Institute, McGill University B Aubert-Broche, AC Evans, and DL Collins, Neurolmage, **32**(1), 138–45, 2006.

- Implemented in Matlab
- Bloch equations for NMR calculations
- Biot-Savart and reciprocity used for field calculations

		Tissue name	PD (%)	<i>T</i> ₁ (ms)	<i>T</i> ₂ (ms)
0.2	1	CSF	100	4360	329
	2	GREY MATTER	86	635	83
	3	WHITE MATTER	77	360	70
	4	FAT	100	350	70
	5	MUSCLE	100	120	47
	6	MUSCLE/SKIN	100	120	47
	7	SKULL	0	0	0
	8	VESSELS	0	0	0
	9	CONNECTIVE	77	500	61
	10	DURA MATER	100	2569	329
	11	BONE MARROW	77	500	70

Modeling—100 mT, 2 fT/√Hz

Imaging parameters:

 $B_{\rm p}$: **100** mT Polarization inversion time: 750 ms Polarization time: 750 ms

Delay time:10 msEncoding time:35 msAcquisition time:70 ms

 N_y (phase): 103 N_z (phase): 41

Readout gradient, G_x : 7.0 Hz/mm Phase gradient, G_y : 7.0 Hz/mm Phase gradient, G_z : 3.0 Hz/mm Voxel size: 2.0 × 2.0 × 4.8 mm³

Noise: **1.80** fT/√Hz

EST.1943

Modeling-250 mT, 1 fT/√Hz

Imaging parameters:

Bp:**250 mT**Polarization inversion time:750 msPolarization time:750 ms

Delay time:10 msEncoding time:35 msAcquisition time:70 ms

 N_y (phase): 103 N_z (phase): 41

Readout gradient, G_x : 7.0 Hz/mm Phase gradient, G_y : 7.0 Hz/mm Phase gradient, G_z : 3.0 Hz/mm Voxel size: 2.0 × 2.0 × 4.8 mm³

Noise: **0.90** fT/√Hz

ST 1943

$t_{p} = \frac{Modeling}{50 \text{ ms}} - Contrast (lnversion Recovery)$

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

109 mm

Results—Unshielded

Unshielded MR-image (4 averages; 65 mT)

Gelatin-agar phantom

Shielded MR-image (1 average; 100 mT)

2D imaging sequence: $t_p = 1 \text{ s}$, $t_{enc} = 100 \text{ ms}$, $t_{read} = 200 \text{ ms}$.

Phase encoding: 57 steps, $|G_z|_{max} = 1.62$ Hz/mm.

Frequency encoding (readout), G_x : 1.63 Hz/mm.

Resolution: ~3×3 mm².

Spin-flip pulses: hard, 4 ms.

Gelatin-agar mixtures:

- $T_2 \sim 120$ ms for the surrounding
- $T_2 \sim 300$ ms for inclusions

A-UR-1

17

Results—Inside MSR

4 s polarization (67 min.; 5 slices total)

Simulation

15 mm slices

Results—Inside MSR 3.5 s polarization (80 min.; 7 slices)

Simulation

LOS Alamos

EST.1943 -

LA-UR-15-26985

Phase dir., mm

4 s polarization and 0.5 0.1 s inversion 0.5

0.5 s polarization and 0.5 s inversion

LA-UR-15-26985

LA-UR-15-26985

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015. Invited presentation 3A-E-O1.1 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015. Not submitted to IEEE Trans. Appl. Supercond

Outlook—Shorter TE (Imaging Sooner)

EST.1943

Outlook—Shorter TE (simulations)

- Signal from more tissues
- Signal in subsequent echoes

EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

~250 mT

~180 mT

Outlook—High B_p Issues

Data from the Nbgradiometers in the unshielded system

100 mT

0

x, mm

-40 -30 -20

lamos

EST. 1943

LA-UR-15-26985

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

per@lanl.gov 24

Outlook—Heating of Ta-grads

LA-UR-15-26985

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

25

Summary

- The shielded system works robustly with filtered amplifiers for all fields and gradients
- We need to increase B_p but not increase noise
- Improve duty-cycle to decrease imaging time
- Unshielded imaging with static Earth's field compensation and reference channel de-noising demonstrated
- Promising preliminary results from heating of Tagradiometers obtained

₽

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2015. Invited presentation 3A-E-01.1 given at EUCAS 2015; Lyon, France, September 6 – 10, 2015. Not submitted to IEEE Trans. Appl. Supercond

Acknowledgements

We greatly acknowledge the funding from Los Alamos National Laboratory's Laboratory Directed Reseach and Development (LDRD) office through grants 20130121DR and 20130624ER.

Thank you for your time and attention!

Robert H. Kraus Jr. Michelle A. Espy Per E. Magnelind Petr L. Volegov

A NEW MRI REGIME

OXFORD

