(Planar) Superconducting resonators: Kinetic Inductance Detectors (KID) and other applications

Alessandro MONFARDINI – Institut Néel CNRS – Grenoble – FRANCE For a larger collaboration

Superconducting resonators Kinetic Inductance Detectors (KID) New IRAM KID Arrays and NIKA2 Further applications

Superconducting Resonators Distributed vs. Lumped Element

Distributed or Lumped for your application ?

Sensitive devices

Quality factor: $Q \equiv \Delta f / f_0$ (typ. $10^3 - 10^7$) superconductivity

Q is a kind of « internal gain ». *Best Q is application-dependent.* An LC(R) resonator is sensitive to L, C and (R) changes. **Obvious.**

Quarter Wave Electrical Measurable:

Transmission (complex) (S21) \Rightarrow I,Q (projections on complex plane)**Physically interesting quantity:**Frequency shift $\Rightarrow \delta f \propto power$ (L.J. Swenson et al., APL 96, Issue 26, 263511 (2010))

EM environment (C): dielectrics + geometry

Quasi-particles density (L,R): KID

Kinetic Inductance Detectors (KID)

Proposed in early 2000s by JPL-Caltech (see J. Zmuidinas talk tomorrow morning !!)

EUCAS 2015

Kinetic Inductance Detectors : how it works

Kinetic Inductance Detectors MUX

"Classical" films for planar resonators

e.g. Al, our best friend !!

A real array

A real MUX electronics: NIKEL

NIKEL specs:

500 MHz, 400 channels - ADC 12 bits 1GSPS

- DAC 16 bits 1GSPS
- FPGA Xilinx Virtex-6

NIKEL functions:

- Excitation tones
- Up-and-down conversion
- Digital mixing
- mini-PC integrated, ethernet to DAQ

For full details: O. Bourrion et al., Journ. of Instrum. 7, P07014 (2012) arXiv:1204.1415

NRIEX-6

/IRTEX-6

Transmission of a (good) 132 pixels array

Frequency-space occupation

New IRAM KID Arrays (NIKA) and NIKA2

EM Spectrum - Counting vs. Recording

mm and sub-mm Astronomy

Blackbody's Wien law $\rightarrow \lambda_{max} \approx (5 / T) mm$

→ «Cold» radiation ($\lambda = 1$ mm = 5K; $\lambda = 2$ mm = 2.5K)

Astrophysics :

Galaxies, stars and planets are born from cold gas and powder.

→ Early formation stages of small-scale structures

Cosmology :

14 billions years ago, first H atoms formed from e⁻ and p⁺ hot «soup». A flash of UV light was emitted, at the same time, everywhere in the Universe. Expansion \rightarrow TODAY the Universe is cold (2.7K) and brightest in mm-wave.

→ Universe shape; large scale; primordial structures; inflation test

"Our" mm-wave telescope

Working Bands:

3mm (100GHz)
2.05mm (146 GHz)
1.25mm (240 GHz)
0.87mm (345 GHz)

IRAM, based in Grenoble, was founded in 1979 by the French **CNRS**, the German **MPG** (Max-Planck-Gesellschaft) and the Spanish **IGN** (Instituto Geográfico Nacional).

IRAM = Institute for Millimetric RadioAstronomy

NIKA and NIKA2

New IRAM KID Arrays (NIKA)

NIKA2

NIKA (until 2015)

- Dualband (1.25mm and 2mm)
- LEKID Arrays Detectors:
 - 132 pixels @ 2mm (150 GHz)
 - 224 pixels @ 1.25mm (240 GHz)
- NIKEL Read-Out Electronics
- State-of-the-art sensitivity (even compared to TES)
- PIs: A. Benoit & A. Monfardini
- Ten successful observing runs at the telescope (2009-15) ... celebrated our 100th day on top of the Sierra Nevada
- Fully justifying NIKA2 !!

From NIKA0 to NIKA2 arrays evolution

2009

2009:

- 30 pixels, detectors noise limited

<u>2014:</u>

- kpixels, photon-noise limited
- large area (full 4 inches)
- Readout line 2.5 m long !!

The NIKA2 arrays technology

http://ltd16.grenoble.cnrs.fr/IMG/UserFiles/Images/06_GOUPY-LTD16.pdf

NIKA on the Moore plot !!

... not in clean-room today ?

NIKA at the 30m

NIKA at the 30m

NIKA seeing glows in the Dark Age

Looking 13 billions years in the past !! Universe only 0.88 Gyr old.

Selected NIKA images

NIKA2 fabrication in Grenoble (2013-15)

Goals et Varia

- 6.5 arc-min FoV (\equiv IRAM 30m)
- Close to background-limited
- Dual-band imaging + polarization
- Derived from NIKA R&D

Characteristics

- Dual-band (1.25mm and 2mm)
- Polarization @ 1.25mm
- KID Arrays Detectors:
 - 1000 pixels @ 2mm
 - 2 × 2000 pixels @ 1.25mm

• NIKEL Read-Out Electronics

NIKA2 is real !

It's massive :

- 1.1 ton
- 2.3m length
- 2 Pulse Tubes
- ≈ 3000 pieces
- ≈ user friendly!

EUCAS 2015

Fully operational, fully equipped (optics, detectors)

> 20 cooldowns

• Full remote operation + cryogen free

Base T ≈ 100mK

Going to the telescope in 2 weeks

NIKA2 is real !

It's massive :

- 1.1 ton
- 2.3m length
- 2 Pulse Tubes
- ≈ 3000 pieces
- ≈ user friendly!

EUCAS 2015

Fully operational, fully equipped (optics, detectors)

> 20 cooldowns

• Full remote operation + cryogen free

Base T ≈ 100mK

Going to the telescope in 2 weeks

More instruments using KID

MUSIC and MAKO (US)

- 10.4 m CSO telescope (Hawaii)
- Mm and sub-mm (MAKO) bands
- Antenna-coupled (MUSIC) and

- LEKID (MAKO):
- 2,304 pixels (MUSIC)
 - 100s pixels (MAKO)

ARCONS (US)

- 5 m Palomar telescope (visible)
- Counting/measuring visible photons
- Lumped Element KID:

2,024 pixels

A-MKID (EU)

- 12 m APEX telescope (Chili)
- Two sub-mm bands (350 and 850 GHz)
- Antenna-coupled KID:
 - 3,500 pixels @ 0.85mm
 - 20,000 pixels @ 0.35mm (PLANNED)
 - Bonn FFTS read-out

High energy impacts imaging/spectra Fundamental Hydrodynamics studies London Depth sensors Fundamental superconductivity studies

..... a lot more would be possible

A-thermal phonons-mediated imaging

EM sensitivity: NbN resonators in LHe

Superfluid LHe turbulence

Resonators as London depth sensors

Resonators as London depth sensors

Resonators as London depth sensors

Superconductor films fundamental studies

InO_x (disordered) resonators ($T_c \approx 3K$) Study of fundamental superconducting thin films properties (collaboration with B. Sacepe, F. Levy-Bertrand – Institut Néel)

Thank you for your attention !!

