

Jochen Braumüller¹, Andre Schneider¹ and Martin P. Weides^{1,2} ¹Karlsruhe Institute of Technology (KIT) ²Johannes Gutenberg University Mainz

September 29th 2015, Burg Warberg, Kryo 2015

Experiments with superconducting qubits multi-photon dressing, qubits with magnetic coupling

- Anharmonic many-level quantum circuit
 - Dispersive shifts, power spectroscopy, Rabi sidebands
- Concentric transmons
 - Gradiometric, fast tunable, site-selective σ_z coupling
- Ongoing
 - QuantumMagnonics:

quantum limited detection of dynamics in ferromagnets

^DBits and Quantum Bits

<u>Classical bit</u>

 $1\,1\,0\,1\,1\,0$

1st transistor 1947

Today's chips

Integrated circuit 1-4 GHz clock rate Multi-core processsor

<u>Quantum bit (qubit)</u>

$$S = 1/2 \qquad |\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

 $\vec{e_z}|0\rangle$ $\vec{e_x}$ $\vec{e_y}$

 $|1\rangle$

Superposition & entanglement: 2^{*N*}- dim. Hilbert space

$$|\Psi\rangle = \sum_{j=0}^{2^N-1} \alpha_j |\phi_{j,1}\rangle \otimes |\phi_{j,2}\rangle \otimes \dots \otimes |\phi_{j,N}\rangle$$

 \rightarrow Parallel processing (Shor factoring, Grover search, Q-simulation)

Transmons: capacitively shunted Josephson junction Anharmonic oscillator

Non-linear, tunable LC oscillator

Magnetic flux Φ changes $L_{\rm J}(\phi)$

$$\omega_{10}(\Phi) \approx \frac{1}{\sqrt{L_J(\Phi)C}}$$

Two lowest levels \rightarrow Bloch sphere

Martin Weides

KIT & JGU Mainz

Introduction

Anharmonic many-level quantum circuit

- Dispersive shifts, power spectroscopy, Rabi sidebands
- Concentric transmons
 - Gradiometric, fast tunable, site-selective σ_z coupling
- Ongoing
 - QuantumMagnonics:

quantum limited detection of dynamics in ferromagnets

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. KRYO 2015 oral presentation. Not submitted for publication.

Anharmonic many-level quantum circuit

 $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$

transmon qubit: weak anharmonicity

 $|4\rangle$

 $|3\rangle$

 $|2\rangle$

Consider higher quantum levels

efficient & robust quantum gates

enhanced security of key distribution in quantum cryptography

quantum simulation

 $\mathsf{spin-}\rlap{l}\rlap{l}_2 \leftrightarrow \mathsf{two} \ \mathsf{levels}$

spin-1 \leftrightarrow three levels

Neeley Nat. Phys. **4,** 523 (2008) Fedorov Nat. **481,** 170 (2011) Bruß PRL **88**, 127901 (2002) Cerf PRL **88**, 127902 (2002) Paraoanu JLTP **175,** 633 (2014)

Martin Weides

$$\hat{H} = \hbar \sum_{j} \omega_{j} |j\rangle \langle j| + \hbar \omega_{r} \hat{a}^{\dagger} \hat{a} + \hbar \sum_{i,j} g_{ij} |i\rangle \langle j| \left(\hat{a}^{\dagger} + \hat{a} \right)$$

- microstrip geometry Sandberg et al. APL 102, 072601 (2013)
- overlap Josephson junction
- transmon regime: $E_I \gg E_C \Rightarrow \alpha_r \sim 0.05$
- spectroscopic measurements
 - VNA readout tone
 - microwave drive/probe tone

Koch *et al.* PRA **76**, 042319 (2007) Blais *et al.* PRA **69**, 062320 (2004)

Martin Weides

KIT & JGU Mainz

Power spectroscopy – multiphoton transitions

Martin Weides

- Six bound states in Josephson potential
- Dispersive shift scales with excitation number <n>

Martin Weides

KIT & JGU Mainz

Braumüller *et al.*,PRB **91**, 054523 (2015)

 $|0\rangle$

Dispersive shift by higher levels

effective Hamiltonian

$$\hat{H}' = \hbar \sum_{j} \omega_{j} |j\rangle \langle j| + \hbar \sum_{j=1} \chi_{j-1,j} |j\rangle \langle j| + \hbar \hat{a}^{\dagger} \hat{a} \left(\omega_{r} - \chi_{01} |0\rangle \langle 0| + \sum_{j=1} (\chi_{j-1,j} - \chi_{j,j+1}) |j\rangle \langle j| \right)$$

Induced by resonator Induced by qubit

Martin Weides

Dispersive shift by higher levels

Rotating-wave Hamiltonian

11

Power spectroscopy – data & simulation

\square Multiphoton dressing $|0\rangle - |2\rangle$, Rabi sidebands

Strong drive

Sweep drive amp, probe freq.

- $|0\rangle$, $|2\rangle$ degenerate in rotating frame \rightarrow dressing
- Probing level structure (in rotating frame) with weak probe tone

KIT & JGU Mainz

\bigcirc Multiphoton dressing – pumping the $|2\rangle$ -level $|\omega_{\mu w}^{p,rf}|/2\pi$ (MHz) Sweep drive & probe freqs. 350 250 150 50 (GHz) $1'\rangle$ $|1\rangle$ S_{21} (a.u. 4.67 (ii) $|2\rangle$ $/2\pi$ 4.66 2'u^dm/m $|0\rangle$ 4.65 measurement (iii) (GHz)(i) $|3\rangle$ $\langle \hat{n} \rangle$ (a.u.) 4.67 (ii) (i) $\omega^d_{\mu w}/2\pi$ ($3'\rangle$ 4.66 4.65 simulation $\omega_3^{rf}/2\pi = (-)330 \,\text{MHz} (i)$ $\omega_1^{rf}/2\pi = 104 \,\text{MHz} (ii)$ 4.3 4.4 4.5 4.6 0 $\omega_{\mu w}^p / 2\pi \,(\text{GHz})$ Dynamical coupling of levels by probe tone \rightarrow avoided crossing, Autler-Townes doublet

Martin Weides

KIT & JGU Mainz

- Introduction
- Anharmonic many-level quantum circuit
 - Dispersive shifts, power spectroscopy, Rabi sidebands

Concentric transmons

- Gradiometric, fast tunable, site-selective σ_z coupling
- Ongoing
 - QuantumMagnonics:

quantum limited detection of dynamics in ferromagnets

- Long coherence: scalable quantum computation, error correction
- Useful: high experimental flexibility by fast flux tuning of levels

NIST

Novel design: Tunable, concentric transmon qubit (2d)

Coherence T_2 limited by energy relaxation $T_2^{-1} = \frac{1}{2}T_1^{-1} + \tau_{\phi}^{-1}$

- Minimize surface/interface TLS loss → microstrip design
- radiative decay \rightarrow reduce qubit's dipole moment (symmetry)

- Fast (ns) tunability
- Side-selective σ_z and σ_x couplings

Concentric transmon qubit – flux spectroscopy

 $E_{\rm J}$, $E_{\rm C}$ do not match conventional transmon theory Koch *et al.* PRA **76**, 042319 (2007) \rightarrow Modified Hamiltonian considering geometric inductance

Martin Weides

KIT & JGU Mainz Braumüller et al., arXiv:1509.08014

 \mathcal{D}

Pulsed measurements – Rabi oscillations

KIT & JGU Mainz Braumüller et al., arXiv:1509.08014

Pulsed measurements – Lifetime and coherence

KIT & JGU Mainz Braumüller et al., arXiv:1509.08014

Pulsed measurements – fast z (energy splitting)-control

KIT & JGU Mainz Braumüller et al., arXiv:1509.08014

XYZ-tomography, benchmarking, state control

Full $\sigma_x, \sigma_y, \sigma_z$ control, SSB-mixing, shaped pulses (DRAG)

- → Gate benchmarking (99.54%)
- → Precise qubit state control

$$\rightarrow$$
 Monitor decay $|\psi_i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ (x-axis)

Martin Weides

KIT & JGU Mainz

Schneider MA thesis (2015)

XYZ-tomography, benchmarking, state control

Full $\sigma_x, \sigma_y, \sigma_z$ control, SSB-mixing, shaped pulses (DRAG) \rightarrow Gate benchmarking (99.54%) \rightarrow Precise qubit state control \rightarrow Monitor decay $|\psi_i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ (x-axis)

Martin Weides

KIT & JGU Mainz

y

Schneider MA thesis (2015)

XYZ-tomography, benchmarking, state control

 \rightarrow Monitor decay $|\psi_i\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ (x-axis)

KIT & JGU Mainz

Schneider MA thesis (2015)

- Introduction
- Anharmonic many-level quantum circuit
 - Dispersive shifts, power spectroscopy, Rabi sidebands
- Concentric transmons
 - Gradiometric, fast tunable, site-selective σ_z coupling

Ongoing

QuantumMagnonics:

quantum limited detection of dynamics in ferromagnets

Description Magnonics: spin waves in nanostructures

Magnon: quantized spin wave excitation

Future information technology

(e.g. spin-torque oscillator, spin-wave propagation control for logic)

Slavin et al., Nat. Nanotech. 4, 479 (2009)

Linewidth $\Delta f > 1$ MHz

Vogt *et al.*, Nat. Commun. 5, 3727 (2014) Attenuation length ~10 um

Strong magnon damping: magnon/phonon/electron scattering

Grand challenge:

To understand physics, single magnon information needed!

Martin Weides

How to probe a single magnon?

- Quantum ground state (T=10 mK) $\hbar\omega_m \gg k_B T$
- Ultra-low power spectroscopy, coherent coupling
- How to achieve?

Extend magnon to artificial spin!

Access magnon lifetime and coherence via coherent coupling

Use concentric transmon with σ_{z} coupling

 \bigcirc

Summary

- Anharmonic many-level quantum circuit
 - Dispersive shifts, power spectroscopy, Rabi sidebands
- Concentric transmons

Introduction

- Gradiometric, fast tunable, site-selective σ_z coupling
- Ongoing
 - QuantumMagnonics:

quantum limited detection of dynamics in ferromagnets

KIT-Team

BA
Cem Kücük
Oliver Hahn
Marcel Langer
Moritz Kappeler
Tomislav Piskor
Patricia Stehle

MA Lukas Grünhaupt Julius Krause <u>Andre Schneider</u> Patrick Winkel Max Zanner

PhD <u>Jochen Braumüller</u> Marco Pfirrmann Steffen Schlör Ping Yang

Technician

Lucas Radtke

Scientists

Hannes Rotzinger Sasha Lukashenko Alexey Ustinov Martin Weides

Thank you for your attention

Mainz
Isabelle Boventer
Mathias Kläui

NIST

Martin Sandberg Michael Vissers David Pappas

http://www.phi.kit.edu/

Martin Weides