

Laura García Fajardo, CERN - TE / MSC / MDT

Other authors: F. Antoniou, A. Bernhard, P. Ferracin, J. Mazet, S. Papadopoulou, Y. Papaphilippou, J. C. Pérez, D. Schoerling International Conference on Magnet Technology 24 18 - 23 October, 2015. COEX, Seoul, Korea

Outline

1. Introduction

- 1.1. The need for Nb₃Sn wigglers in CLIC Damping Rings
- 1.2. Main considerations for the Nb_3Sn wiggler design

2. Nb_3Sn wiggler design

- 2.1. Optimization of the main wiggler parameters
- 2.2. 2D magnetic calculations
- 2.3. 3D magnetic calculations
- 3. Manufacturing process of the five-coil prototype
 - 3.1. Winding test with copper wire
 - 3.2. Coil test with low grade Nb_3Sn wire
 - 3.3. Production of a five-coil prototype

Outline

1. Introduction

- 1.1. The need for Nb_3Sn wigglers in CLIC Damping Rings
- 1.2. Main considerations for the Nb_3Sn wiggler design
- 2. Nb₃Sn wiggler design
 - 2.1. Optimization of the main wiggler parameters
 - 2.2. 2D magnetic calculations
 - 2.3. 3D magnetic calculations
- 3. Manufacturing process of the five-coil prototype
 - 3.1. Winding test with copper wire
 - 3.2. Coil test with low grade Nb_3Sn wire
 - 3.3. Production of a five-coil prototype

Introduction

energy)

Introduction

Normalized emittance targets:

The need for Nb₃Sn wigglers in CLIC Damping Rings

ht

Wiggler baseline design for CLIC DRs:

• 26 2-m-long wigglers in each straight section of the DRs

500 nm

 $6 \text{ keV} \cdot \text{m}$

5 nm

- Nb-Ti superconducting material
- $\lambda_w = 51 \text{ mm} \text{ and } B_w = 3 \text{ T}$

- Working point: 85% of magnet's current limit
- λ_w : Wiggler period length

CERN

Horizontal

Longitudinal

Vertical

So why using Nb₃Sn?

- From CLIC point of view: Possibility of decreasing the DR size
- From magnet point of view: Possibility of increasing the working margin

The need for Nb₃Sn wigglers in CLIC Damping Rings

Five-coil prototype tested at CERN in 2012 (D. Schoerling)

• $\lambda_w = 41.8 \text{ mm} \text{ and } B_w = 3 \text{ T}$

Introduction

Test interrupted after reaching 75% of the magnet's current limit

Poor insulation between coils and poles caused shorts to ground

<u>Next Nb₃Sn five-coil prototype goals:</u>

- Improve the pole-to-coil insulation
- Study different design options that enable:
 - \checkmark Decreasing the DRs size
 - \checkmark Increasing the magnet's working margin

... while fulfilling the emittance requirements

 λ_w : Period length; g: Magnetic gap

 y_c and z_c : vertical and horizontal coil dimensions

 $B_{\rm w}$: Magnetic flux density amplitude in the centre of the wiggler gap

Vertical racetracks to avoid electrical interconnections

Cross section of the prototype

<u>OST RRP 132/169 Nb₃Sn wire specifications:</u>

Diameter [mm]	0.85
Sub-element size [µm]	< 50
J_c SC [A/mm ²] at $B = 12$ T and $T = 4.3$ K	2450
J_c SC [A/mm ²] at $B = 15$ T and $T = 4.3$ K	1280
SC fraction (%)	45.45
Wire insulation (S2-glass braid) thickness (µm)	70

 J_c : Critical current density

Outline

- 1. Introduction
 - 1.1. The need for Nb₃Sn wigglers in CLIC Damping Rings
 - 1.2. Main considerations for the Nb_3Sn wiggler design

2. Nb_3Sn wiggler design

- 2.1. Optimization of the main wiggler parameters
- 2.2. 2D magnetic calculations
- 2.3. 3D magnetic calculations
- 3. Manufacturing process of the five-coil prototype
 - 3.1. Winding test with copper wire
 - 3.2. Coil test with low grade Nb_3Sn wire
 - 3.3. Production of a five-coil prototype

Nb₃Sn wiggler design

Optimization of the main wiggler parameters

Selection of the winding configuration with the largest packing factor:

(packing factor: ratio between the area occupied by wires and the area of the coil's cross section)

Comparing the packing factor of both configurations for the same *n* and *m*:

 $f_c > f_d$ if n < 2m

which means

 $y_c < z_c \sqrt{3}$

- f_c and f_d : packing factor of the centred and displaced-layers configurations
- n and m: number of wire layers and number of
 wire turns in the first (lowest)
 layer
- y_c and z_c : vertical and horizontal coil dimensions

Invited presentation 4OrAB_01 given at MT-24, Seoul, Korea, October 18-23, 2015. Nb₃Sn wiggler design

Optimization of the main

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016.

<u>*B* components in the gap of the wiggler:</u>

$$B_{x} = 0$$

$$\sum_{n=1}^{n} B_{n} \sin\left(n\frac{2\pi}{\lambda_{w}}z\right) \cosh\left(n\frac{2\pi}{\lambda_{w}}y\right)$$

$$\sum_{n=1}^{\infty} B_{n} \sin\left(n\frac{2\pi}{\lambda_{w}}z\right) \cosh\left(n\frac{2\pi}{\lambda_{w}}y\right)$$

$$B_{z} = \sum_{n=1}^{\infty} B_{n} \cos\left(n \frac{2\pi}{\lambda_{w}} z\right) \sinh\left(n \frac{2\pi}{\lambda_{w}} y\right)$$

From B_{y} expression:

$$\frac{B_{w,n}}{B_{p,n}} = \frac{1}{\cosh\left(n\frac{\pi}{\lambda_w}g\right)}$$

One period of the wiggler

Numerical calculations with OPERA 2D for different z_c/λ_w values

Taking $z_c / \lambda_w = 0.34$, n = 1 is a good approximation for B_{v} in the centre of the gap

$$B_{y} = B_{w} \sin\left(\frac{2\pi}{\lambda_{w}} z\right)$$

Nb₃Sn wiggler design

Optimization of the main wiggler parameters

Selection of B_{W} and λ_{W} : <u>Parametrization of the DR at certain B_{w} :</u> Region of interest $B_w = 3 \mathrm{T}$ 100 Output emittances of CLIC DRs are dominated by 1.55 90 the Intra-Beam Scattering (IBS) effect 1.5 80 1.45 70 1.4 *x***-axis**: period length of the wiggler (λ_{w}) L_{w} (m) 60 1.35 ່ເບື້ y-axis: total length of the DR occupied by 50 1.3 wigglers (L_w) 40 1.25 1.2 30 Black line: normalized horizontal emittance 1.15 limit (500 nm) 20 1.1 10 Coloured bands: IBS impact (ε_r) (keep \leq 120 140 60 80 100 20 40 1.4) λ_w (mm)

Black mark on top represents the baseline design

 \bigcirc

Invited presentation 40rAB_01 given at MT-24, Seoul, Korea, October 18-23, 2015. Nb_3Sn wiggler design

Optimization of the main wiggler parameters

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016.

Increasing B_w would provide several λ_w choice options

Choosing certain period length within the range 40 mm $\leq \lambda_w \leq 55$ mm it's possible to work within the range 3.5 T $\leq B_w \leq 4$ T with a fixed wiggler geometry (*keeping the IBS impact lower than 1.4*)

Nb₃Sn wiggler design

Optimization of the main wiggler parameters

Additional restriction:

Keeping the working point (WP) below 80% of the magnet's current limit for all $3.5 T \le B_w \le 4 T$

Scenarios for achieving 3.5 T $\leq B_w \leq 4$ T with 40 mm $\leq \lambda_w \leq 55$ mm values:

Invited presentation 40rAB_01 given at MT-24, Seoul, Korea, October 18-23, 2015. Nb₃Sn wiggler design

Optimization of the main

wiggler parameters

<u>Comparison between Nb₃Sn and Nb-Ti scenarios:</u>

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016.

 \bigcirc

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. Invited presentation 40rAB_01 given at MT-24, Seoul, Korea, October 18-23, 2015.

Nb₃Sn wiggler design

Nb₃Sn wiggler design

3D magnetic calculations

<u>Good field region:</u>

OPERA 3D model:

 B_y is not constant in the horizontal direction (x-axis)

<u>Criterion of good field quality in</u> <u>the wiggler baseline design:</u>

The homogeneity of $B_{\!_{Y}}$ should remain within 0.5%

- at $x = \pm 10$ mm from the central axis
- at any *z*-position

- at $x = \pm 15$ mm from the central axis
- at any *z*-position

Field homogeneity map: $|(B_y(0) - B_y(x))/B_y(0)|$

Outline

- 1. Introduction
 - 1.1. The need for Nb_3Sn wigglers in CLIC Damping Rings
 - 1.2. Main considerations for the Nb_3Sn wiggler design
- 2. Nb₃Sn wiggler design
 - 2.1. Optimization of the main wiggler parameters
 - 2.2. 2D magnetic calculations
 - 2.3. 3D magnetic calculations
- 3. Manufacturing process of the five-coil prototype
 - 3.1. Winding test with copper wire
 - 3.2. Coil test with low grade Nb_3Sn wire
 - 3.3. Production of a five-coil prototype

Manufacturing process

Winding test with copper

Fiberglass squeezes during winding

<u>Goal of the test:</u>

Define the real coil thickness to consequently produce the winding poles The upper part of the winding pole is slightly curved to ease the winding

Assembly for the winding test with copper wire

- Poles insulates with 150 µm of fiberglass cured with ceramic binder
- Copper wire with the same diameter and insulation of the Nb₃Sn wire

Gaps were observed in the straight part of the winding pole due to springback of the wire

Coil test with low grade Nb₃Sn wire

During heat treatment, the diameter of the OST-RRP Nb_3Sn wire increases $\sim 2\%$

Manufacturing process

<u>Goals of the test:</u>

- Correctly establish the vertical dimension of the side plates
- Do electrical tests to check the insulation effectiveness

- Coil will undergo heat treatment (HT) and vacuum impregnation
- Electrical tests will be carried out
- Coil will be cut transversally to check the position of the wires and the dimensions change after HT
- Coil will be cut longitudinally to check the existence of gaps due to expansion and contraction of the winding pole during and after HT

Manufacturing process

Activities:

- The five-coil prototype will be wound with the Nb_3Sn wire and will undergo HT
- After HT, the coils will be impregnated with radiation-resistant epoxy with low viscosity
- The mould will be made of aluminium and treated with a releasing agent for removing the parts after the impregnation process
- The magnet will be trained in liquid helium at 4.2 K
- A mirror configuration will be used and Hall probes will be glued on the magnetic mirror for field measurement

These activities are foreseen to be completed by February 2016

Assembly for the five-coil prototype

Production of a five-coil

prototype

Parts of the aluminium impregnation mould

Conclusions

- The main design parameters of a superconducting wiggler magnet that will be wound with OST RRP Nb₃Sn strand 0.85 mm diameter insulated with S2-glass braid, have been established
- For 15 mm magnetic gap and 49.5 mm period length, several scenarios that meet CLIC DR emittance and IBS impact constraints while keeping the working point below the 80% of the magnet's current limit, are possible by changing the peak magnetic flux density at the centre of the gap from 3.5 T to 4 T
- With such design, in principle it would be possible to decrease the size of CLIC DRs by 20% respect to the baseline design. It is also possible to keep the baseline design and work at 54% of the magnet's current limit
- The five-coil prototype is foreseen to be built and tested by February 2016

Thank you