Development of MQXF, the Nb₃Sn Low-β Quadrupole for the HiLumi LHC

P. Ferracin

on behalf of the MQXF collaboration

24th International conference on magnet Technology Seoul, South Korea 19-23 October, 2015

Acknowledgments

• CERN

- A. Ballarino, H. Bajas, M. Bajko, B. Bordini, J.C. Perez, S. Izquierdo Bermudez, P. Fessia, P. Grosclaude, M. Guinchard, M. Juchno, F. Lackner, L. Oberli, H. Prin, J. Rysti, E. Rochepault, S. Sequeira Tavares, E. Todesco
- BNL
 - M. Anerella, A. Ghosh, J. Schmalzle, P. Wanderer
- FNAL
 - G. Ambrosio, R. Bossert, G. Chlachidze, L. Cooley, E. Holik, S. Krave, F. Nobrega, M. Yu
- LBNL
 - D. Cheng, D.R. Dietderich, H. Felice, R. Hafalia, M. Marchevsky, H. Pan, G. Sabbi, X. Wang
- LASA
 - V. Marinozzi, M. Sorbi
- Tampere University of Technology
 - T. Salmi

From LHC to HiLumi LHC

- LHC operating at 6.5 TeV
- In the period 2015-2023
 - Peak luminosity of 2.10³⁴ cm⁻²s⁻¹
 - Integrated luminosity of 300 fb⁻¹
- HiLumi LHC
 - Upgrade the Interaction Region in 2024-2026
 - Peak luminosity of 5.10³⁴ cm⁻²s⁻¹
 - 3000 fb⁻¹ integrated luminosity in following ~12 years

Introduction

HiLumi Interaction Region

- New inner triplet quadrupole
 - Larger aperture to reduce the beam size
 - 70 to 150 mm aperture

Nb₃Sn allows keeping a compact triplet notwithstanding the larger aperture

Introduction

HiLumi low-β quadrupole

- Target: 132.6 T/m

 150 mm coil aperture, 11.4 T B_{peak}
- Q1/Q3 (by US-HiLumi Project)
 2 magnets MQXFA with 4.2 m
- Q2a/Q2b (by CERN)
 - 1 magnet MQXFB with 7.15 m
- Different lengths, same design
- Short model phase in progress
 From 1st to 2nd generation design
- Long prototype fabrication started

Introduction

ARP

- LHC Accelerator Research Program (since 2003)
 - R&D on Nb₃Sn quadrupoles for LHC luminosity upgrade
- From TQ/LQ series to MQXF
 From 90 to 150 mm
- MQXF scale-up of HQ
 - Similar coil lay-out
 - Same structure concept
 - Successfully tested

LARP TQ-LQ Nb₃Sn, 1-3.7 m 90 mm apert. 200 T/m

LARP HQ Nb₃Sn, 1 m 120 mm apert. 170 T/m

LARP-CERN MQXF Nb₃Sn, 1.5 m 150 mm apert. 132.6 T/m

Outline

- Superconducting strand and cable
- Coil design and fabrication, and magnetic analysis
- Magnet design and mechanical analysis
- Quench protection
- Conclusions

Superconducting strand

B. Bordini, 10rAA_03

- 0.85 mm strand, 1.2 Cu/SC
- Non-Cu J_c at 4.2 K
 - 2450 A/mm² at 12 T
 - 1280 A/mm² at 15 T
- Filament $\emptyset \leq 55 \ \mu m$
- 3 strands used for short model
 - OST RRP 108/127, 132/169
 - EAS Bruker PIT 192
- RRP meets spec.
 - PIT still 5% less J_c , but only at 12 T
- 108/127 and PIT selected for the long prototypes

Superconducting strand

Operational margin

- From 1st to 2nd generation design
 - Length: 4.0 to 4.2 m for Q1/Q3, 6.8 to 7.15 m for Q2a/Q2b
 - Reduction of gradient from 140 to 132.6 T/m
 - Strand spec. J_c reduced from 1400 to 1280 A/mm² at 15 T
 - Magnet I_{op} from 82% to 77% of I_{ss}

- Excellent memory
- 90/98% *I_{ss}* at 1.9K/4.5K
-still, we need 7.5 m long coils

9

Superconducting cable

- 40-strand cable
 - Bare width X thickness: 18.150 X 1.525 mm
 - SS core 12 mm wide and 25 μm thick
- Keystone angle reduced from 0.55 to 0.4 degree
 - Cabling degradation
 - <5% for PIT; <3% for RRP
- Braided insulation: 0.145 mm (S2-Glass)

Superconducting strand and cable

Dimensional variation during reaction

- Cable/coil size after reaction is critical
 Issue in HQ01
- Single cable, stacks, coil cross-section
 Image analysis of cable contours
- Consistent data from different set-ups, labs, and coils
- Results
 - Volumetric expansion of +3.0 to +3.5%
 - Mainly in thickness: +2.8 to +3.2%
 - The rest is distributed between
 - Width expansion: 0.0 to +1.0 %
 - Length contraction: -0.4 to 0.0 %
 - Depending on tooling and <u>braiding</u>

E. Rochepault, 3PoBA_20

E. Holik, 3OrCC_02

Outline

- Superconducting strand and cable
- Coil design and fabrication, and magnetic analysis
- Magnet design and mechanical analysis
- Quench protection
- Conclusions and plans

Coil design and fabrication

S. Izquierdo Bermudez, 2PoBA_03

- 2-layer, 4-block design
- Ti alloy pole with cooling holes, alignment key slot
- 2 end spacers for peak field reduction and field quality optim.

- 13 short model coils fabricatedFirst 2 prototype coils reacted by LARP
- Tooling under procurement at CERN

Coil design and fabrication

- First short coil tested in mirror
 91% of current limits
- Image analysis of cable contours
 - Good fit of end-spacers
 - But, up to 0.5 mm azimuthal and radial shift in straight section
- Space for expansion reduced for 2nd generation coils
 - From 2 to 1% on width
 - …Always "trade-off between compacting the coil and minimize risk of insulation/conductor degradation"

Magnetic analysis

S. Izquierdo Bermudez, 2PoBA_03

- Fine tuning of coil design from I to II gen.
 - New cable geometry compensation end-effect
- All integrated harmonics below 1 units

- Corrective strategies
 - Coil shim for allowed harm.
 - Magnetic shims for un-allow.
 - Successfully tested on HQ03

	Calc.	Meas.
Δb_3	2.49	2.74
Δb_5	0.28	0.31

Outline

- Superconducting strand and cable
- Coil design and fabrication, and magnetic analysis
- Magnet design and mechanical analysis
- Quench protection
- Conclusions and plans

Magnet design MQXFB

• Superconducting coil

Magnet design MQXFB

• Pole key for alignment

Magnet design MQXFB

Bolted aluminium collar

No coil pre-load

Magnet design MQXFB

Bolted iron pad
 No coil pre-load

Magnet design MQXFB

Iron master

- Half-length plates for bladders and keys

Magnet design MQXFB

Loading and alignment keys

Magnet design MQXFB

Second iron master
 Coil-pack sub-assembly

MQXFB

Magnet design MQXFB

• Segmented aluminium shell

Paolo Ferracin

0

0

0

Magnet design MQXFB

Aligned to the yoke

Magnet design MQXFB

Magnet design MQXFB

Magnet design MQXFB

Axial support system Aluminium rods and end-plates

Magnet assembly and pre-loading

- Shell-yoke modules combined
- Insertion of coil-pack sub-assembly

Then bladder operation

Mechanical analysis

- ~30% of shell force intercepted by collars
- 2. Spring back
- 3. Full pre-load at 1.9 K
- 4. Coil still compressed at G_{op}
 - Alignment maintained

Coil peak azimuth. stress

Validation support structure

M. Juchno, 3PoBA_04

- Two identical structures assembled and pre-loaded with aluminium coils at LBNL and CERN
- Components instrumented with strain gauges
 - Very good agreement

Paolo Ferracin

Outline

- Superconducting strand and cable
- Coil design and fabrication, and magnetic analysis
- Magnet design and mechanical analysis
- Quench protection
- Conclusions and plans

Quench protection

- 50% more stored energy in the coil than LHC dipole
 - Only 5% on dump resistor, due to high inductance of the circuit
- <u>Outer layer trace impregnated with the coil not enough</u>: T_{peak} =340 K
- <u>Outer and Inner layer trace</u> can reduce T_{peak} to 260 K
 Cooling and detachment issues to be addressed
- <u>Outer layer trace and CLIQ</u> can reduce T_{peak} to 230 K
 - Aspects related to the circuit being analysed
- All strategies being explored

M. Marchevsky, 2PoBA_01

E. Ravaioli, 2PoBA_06

Outline

- Superconducting strand and cable
- Coil design and fabrication, and magnetic analysis
- Magnet design and mechanical analysis
- Quench protection
- Conclusions and plans

Conclusions

- HiLumi low-β quadrupole magnet MQXF
 Into short model phase, start of the prototype phase
- Fine tune of the design: from 1st to 2nd generation

 Increased margin with longer length and lower gradient
- RRP conductor within spec.
 - R&D on PIT in progress to meet J_c (~5% lower at 12 T)
- New cable geometry for reduced degradation
- Conductor expansion during HT and position under study

 Corrective strategies for field quality defined and tested
- Support structure qualified at CERN and LBNL
 - Excellent agreement with strain gauges
- Quench protection system with redundancy, $T_{peak} < 350$ K

First MQXFS assembly test to be performed at FNAL

H. Pan, 3PoBA_06

G. Ambrosio, 3OrCC_03

Superconducting strand

Operational margin (I)

- G_{op}: 132.6 T/m
- *I_{op}*: 16.47 kA
- *B*_{peak_op}: 11.4 T
 - 77% of I_{ss} at 1.9 K (spec.)
- Stored *E*: 1.2 MJ/m
- Induct.: 8.2 mH/m

- From first to second generation design
 - Margin increased

