



# High Magnetic Field Facility for Neutron Scattering

#### **Project HFM-EXED**

#### **NHMFL:**

M. Bird, I. Dixon, J. Toth, S. Bole, S. Hannahs, J. Kynoch, H. Bai, S. Marshall, T. Adkins, G. Boebinger J. Miller, A. Bonito-Oliva



P. Smeibidl, A. Daske, H. Ehmier, C. Fritsche, J. Heinrich, M. Hoffmann, S. Kempfer, R. Wahle



MT-24 Seoul

HZB:

P. Bruzzone, R. Wesche

#### 21. Oct. 2015





# What is Helmholtz? What is HZB?







# What is Helmholtz? What is HZB?







## Investigation of <u>Structure</u> and <u>Dynamics</u> of Complex Materials and Material Systems with Neutrons



**Scattering Angle** 





#### **Unconventional Superconductors**

# Understanding the interplay between superconductivity and other competing orders

- § Identification of different vortex phases (lattice, liquid, disentangled, entangled, decoupled)
- § Method: diffraction / inelastic scattering / SANS



B/T phase diagram of underdoped YBCO Le Boeuf et. al., Nature Physics **9** (2013) 79





Magnet Systems for n-Scattering at HZB

# Continuous Field max. $\sim 15 \text{ T} - \text{ split pair configuration}$







#### Present Cryomagnets for n-Scattering Experiments







**Horizontal Field** 





#### **High Field Magnets for Neutron Science**

#### Monochromatic

**Triple-Axis Instrument** 

#### Split-Coil-Magnet (vertical field)



#### **Broad Wavelength Band** of Neutrons

**TOF-Instrument** 

Tapered Solenoid (horizontal field)







#### Neutron-Guide-Hall-2 with Multi-Spectral Guide



9





#### **Project Preparation Phase**

TOF instrumentation with multispectral neutron guide and horizontal magnet to allow optimum magnet design







# Magnets for n-Scattering Experiments

Future



25 T – 31 T Hybrid Magnet (Solenoid) Geometry and power of resistive coil determine maximum field





#### Why not a Superconducting Magnet?



Plot maintained by Peter Lee at: http://magnet.fsu.edu/~lee/plot/plot.htm





#### Design Parameter Hybrid Magnet

| Central Field                         | > 25 T (> 30) T                |  |
|---------------------------------------|--------------------------------|--|
| Bore                                  | 50 mm horizontal               |  |
| Opening Angle                         | 30°                            |  |
| Power Resistive Insert                | 4 MW (8 MW)                    |  |
| Field Homogeneity                     | < 0.5%<br>(15 mm x 15 mm Vol.) |  |
| Operating Current                     | 20 kA                          |  |
| Magnetic Field of<br>Resistive Insert | 13 T – 18 T<br>(4 MW / 8 MW)   |  |
| Magnetic Field of<br>Supercond. Coil  | 13 T                           |  |
| Height                                | ~ 5 m                          |  |
| Total Weight                          | ~ 25 t                         |  |
| Cold Mass                             | ~ 6 t                          |  |







#### Simplified Electrical Circuit Coil Protection







## **Quench Detection System**

(Two independent systems)







# Superconducting Outsert Coil Nb<sub>3</sub>Sn Strand and 3 Types of Superconductor

|                                     | High Field             | Mid Field            | Low Field            |
|-------------------------------------|------------------------|----------------------|----------------------|
| Cable Pattern                       | 4x3x3x3 <b>x3</b> =324 | 5x4x4 <b>x3</b> =240 | 4x4x4 <b>x3</b> =192 |
| N sc strands/Cu strands             | 324/0                  | 120/120              | 64/128               |
| Strand diameter                     | 0.81mm                 | 0.81mm               | 0.81mm               |
| Jc-nocu (12T,4.2K)                  | >2100A/mm2             | >2100 A/mm2          | >2100 A/mm2          |
| Type of strand : Nb <sub>3</sub> Sn | RRP                    | RRP                  | RRP                  |
| Strand coating                      | Chrome plating         | Chrome plating       | Chrome plating       |
| Void fraction                       | 29+/-1%                | 29+/-1%              | 29+/-1%              |









#### **Resistive Insert Coil** Horizontal









#### Superconducting Outsert Coil

#### **Final Assembly**







## Superconducting Outsert Coil

#### **Final Assembly**

















## Superconducting Outsert Coil

#### **Final Assembly**















#### Hybrid Magnet + Technical Infrastructure



#### **Operation:**

- § 400 V / 20 kA DC power supply
- S Helium refrigerator for CICC coil, radiation shields and current leads
- § high pressure, high purity cooling water 4 / 8 MW cooling power for resistive coil





#### **HZB** Neutron Scattering Facilities







# Infrastructure Building









# Control System – Hybrid Magnet



**Combine Controls for:** Magnet + **Power Supply +** Water Cooling + Helium Refrigerator +

Data monitoring and safety procedures



Jan. 2015

to



# Commissioning Hybrid Magnet

- Aug 2015 Start of cooldown of superconducting coil
- 16 Oct 2014 First successful magnet test at 20 kA (26 T)
- 12 Dec 2014 Relocation of magnet system from HFM technics building to Neutron Guide Hall
  - Installation of magnet on neutron instrument EXED
- Feb. 2015Start HFM/EXED commissioning07 Apr 2015Successful test on instrument
  - Successful test on instrument 20 kA (26 T) for 3 hours





16-6