

Current Flow in Polycrystalline Iron-Based Superconductors Assessed by Scanning Hall Probe **Microscopy**

M. Eisterer, J. Hecher, T. Baumgartner Atominstitut, TU Wien, Vienna, Austria

A. Yamamoto

University of Agriculture and Technology, Tokyo, Japan

J. D. Weiss, J. Jiang, C. Tarantini, E. E. Hellstrom, D. C. Larbalestier National High Magnet Field Laboratory, Florida State University, Tallahassee, USA

TECHNISCHE

ΕN

VERSITA

ISS2015, Tokyo, November 17th

ATOMINS

Outline

- Motivation
 - Asymmetry of magnetization loops
 - Hysteresis in field dependence of J_c (transport measurements)
 - Common explanation
- Experimental
 - Samples (polycrystalline Ba-122)
 - Scanning Hall probe microscopy
 - Inter- and intra-granular currents
- Model: Josephson coupled grains
- Comparison with data
- Conclusions

Acknowledgments

Johannes Hecher

Thomas Baumgartner

Work supported by the European-Japanese cooperative research project SUPER-IRON and by the Austrian Science Fund (FWF): 22837.

Exploring the potential of Iron-based Superconductors

Asymmetry of magnetization loops

K- and Co-doped Ba-122

- Higher macroscopic currents in decreasing fields than in increasing fields

Influence of grain size

- Submicron sized grains: peak at decreasing fields (intergranular currents)
- "Large grains": peak at increasing fields (intra-granular currents)
- Medium sized grains: both peaks

Hysteresis in transport measurements

K-doped Ba-122 wire

Common explanation: return field

- Return fields of the grains: H^{return}
- J_c is determined by the field at the grain boundaries
- H^{return} adds or subtracts from the applied field:

 $H^{shift} = 2H^{return}$

Ba-122 wire:

$$\mu_0 H^{return} = ~2 T$$

J^{grain} ~ H^{return}/r = | r ~ 100 nm | = 2×10⁹ A/cm² > J_d

Corresponding field gradient would be easily visible in our SHPM experiments, but is absent.

This explanation can be ruled out in our case!

J. E. Evetts and B. A. Glowacki Cryogenics 28 (1988) 641

EXPERIMENTAL

Samples

Ba_{0.6}K_{0.4}Fe₂As₂ Applied Superconductivity Center Florida State University Hot isostatic pressure (HIP)

- 600-1120 °C
- 10-20 h
- Grain sizes $s_0 \sim 100 \text{ nm}$, 1 μm , 3 μm
- $J_c(sf, 5 K) \sim 10, 1, 1.10^4 Acm^{-2}$

Grain size distribution:

$$P(s,s_0) = \frac{s^3}{2s_0^4} e^{-\frac{3s}{s_0}}$$

Ba(Fe_{0.92}Co_{0.08})₂As₂ University of Tokyo Ambient pressure

- 500-1100 °C
- 24-240 h
- Grain sizes $s_0 \sim 100 \text{ nm}$, 1 μm , 3 μm
- $J_c(sf, 5 K) \sim 5, 0.5, 1.10^4 Acm^{-2}$

Scanning Hall Probe Microscope (SHPM)

- Helium gas flow cryostat: 3-150 K
- 8 T superconducting magnet
- Scan range: 3×3 mm²
- Spatial resolution: 2 µm

Derivation of inter- and intra-granular current densities

Average global (inter-granular) and local (intra-granular) critical current densities can be derived simultaneously.

RESULTS

Field profiles at different applied fields

K-doped Ba-122

Separation of inter- and intra-granular contributions

Evaluation of current densities → calculation of magnetization Anti-correlated behavior of inter- and intra-grain currents

MODEL

Model assumptions

- Josephson coupled grains
 - Only weak links (density of low angle grain boundaries (strong links) below the percolation threshold)
- Averaging over the grain size distribution
 - Average Josephson current density depends on the junction width
- Reversible and irreversible currents add within the grains
 - Reversible currents: equilibrium magnetization
 - Irreversible currents: flux pinning
 - They add/subtract on the in-/decreasing field

branch

corresponding magnetization

Josephson Junctions

$$\nabla \varphi = \frac{2m_e}{\hbar e n_e} J_s + \frac{2e}{\hbar} A$$

Path integral: $\Delta \varphi = \frac{2m_e}{\hbar e n_e} \oint J_s d\vec{r} + \frac{2e}{\hbar} \phi = 2\pi n$

Has to be fulfilled for all possible paths!

 φ ...phase of superconducting wave function

Josephson Junctions

 $I_B \propto$

- Currents flowing in different direction (partly) compensate each other.
- Fraunhofer pattern
- $I_B \propto B^{-1}$

Alternative description: Surface currents

Phase shift is determined by the surface currents at boundary!

Advantage: Not restricted to Meissner state/currents

Motivated by ideas of D'yachenko et al., e.g. Physica C 213 (1993) 167

Average current density across junction (grain boundary)

0.8 0.7

0.6

0.5 **Q** 0.4

0.3

0.2 0.1

0.0

0

Fit to experimental data

Small grains favor high in-field currents

Conclusions

- Grain boundary physics dominates the critical currents in untextured polycrystalline Ba-122.
- A grain refinement reduces the field dependence of J_c.
 - J_c of the order of 0.1 MA/cm² @ 4.2K 10 T seems possible for nanosized grains (20 nm).
- Intra-granular currents reduce the macroscopic currents.
 - Pinning should **not** be very strong.
 - Magnetic history effects on the critical currents
 - Asymmetric hysteresis loops

