ISS 2015 28th International Symposium on Superconductivity November 16 - 18, 2015

Superconducting Nanowire Single Photon Detector for Quantum Information SNSPD for QI

Lixing You

¹Shanghai Center for SuperConductivity (SC²), SIMIT, CAS ²Dept of Phys., UC Berkeley lxyou@mail.sim.ac.cn

Nov. 17, 2015

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

Content

n Quantum Information and SPD

n Introduction to SNSPD
n SNSPD for 1550 nm
n SNSPD for NIR to VIS
n Applications

Shanghai Center for SuperConductivity (SC²)

NEC-NICT

(45 km, 13 dB)

Otemachi-1

Honao

SNSPD for Quan Commun

Schematics of OKD

Channel loss (dB

105 km

250

200

中国科学院上海超导中心

All Vienna (1 km, 0.5 dB) Koganei-3 Koganei-2 All Solution (1 km, 0.5 dB) Koganei-2 Koganei-2 Koganei-2 Koganei Station (1 km, 0.5 dB) Koganei-2 Koganei Station (1 km, 0.5 dB) Koganei St

Koganei-1

Tokyo QKD network since 2010

Demonstration of QKD using QD and SNSPD (東大、富士通、NEC) Sci Rep 5: 14383. (2015)

Demonstration of 200 km QKD (NTT & NIST) Nat Photon, 1: 343(2007)

100

Fibre length (km)

150

50

中国科学院上海微系统与信息技术研究所

a

营 104

105

10

102

107

10*

100

10-1

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

3

SNSPD for Quantum Simulation

a <mark>n</mark>-photon coincidence count rate R ~ hⁿ

Shanghai Center for SuperConductivity (SC²)

Yao et al., Nature Photonics 6, 225 (2012)

中国科学院上海超导中心

Current Si SPD : h~ 20% @940 nm Gives 1 Hz for f=10MHz for *n*=10

If we could improve h to 60%, the coincidence count rate can improved by 4-5 orders of magnitude. Measurement Time can be suppressed from 1 year to 10 min.

Shanghai Center for SuperConductivity (SC²)

Content

n Quantum Information and SPD

n Introduction to SNSPD

n SNSPD for 1550 nm

n SNSPD for NIR to VIS

n Applications

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

Detection Mechanism

Cooper pair breaking by single photon

Shanghai Center for SuperConductivity (SC²)

Detection Mechanism

P Material: Ultra thin NbN film (~ 5 nm)

中国科学院上海超导中心

p Structure: nanowire (linewidth <= 100nm)

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

Detection Mechanism

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

Detection Mechanism

File	Edit	Vertical	Horiz/Acc	I Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	e Utilities	Help	T		16	- 왕기원	Tek		X
										''' ¥										
E																				
E																				
										‡										
Ē																				
										[
Ì																				
Ĩ			k k			a ta t	R R B			8 8 -		8 X -	a si				a ka	8		
										-								80.8		
Ļ		++	F, (F			· · ·	- i - i			+-+-		⊷ ,−,	+ +		4		-++-+-			
Ļ						3				+ + +										-
ļ			, 27 - 68 - 1 -		- a - a		12 - 12 <u>-</u> 12				a ar ar	an an a'	36 - 62 				aa ay aa			-
Ĩ										+ +								0 2		
Ì										· · •		•20 (A) (A)	.a) 65.		а с. а. 1 1					
		William Ha	distant and	an we stilled	a hadd below	(hat of the life	L lunthand	(Judit La	. Lux Adroid J	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	We the William	de Marshei	يخافه (ايراد	المارافينية	i Linner Lu	hand for his	te distantia	W. J. J.	. Margareth	and distor
T.	Yeshirik	Andre 1	-	beele		ngung palas	hanner ber	n and the	a addara		anter lan	loop-n'r	'Yis-Datr'i	a de la constante	r R lingtorraril	n Callentification	-	-	uluk serengi	
E				en en e										ан е.						
-																				
Ļ	1 1	1-1-		<u>, </u>	<u> </u>		<u> t </u>	1	1-1)	n n t	<u> </u>		1-0		<u>i – – – – – – – – – – – – – – – – – – –</u>		-1-14-1	- į	-1-1-	
(c1) 40.0mV/div 50Ω B _W :12.5G									J 2.0μs/div 6.25GS/s 160ps/pt Stopped Single Seq											
																1 acqs	5 E 45 E	2014	RL:125k	12:46
																Auto	5月15日,	2014	16:	13:46

中国科学院上海微系统与信息技术研究所

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

SPD performances @ 1550 nm

SPD	Count Rate (Hz)	DE (%)	Dark Counts (s ⁻¹)	Jitter (ps)	Temp.
SNSPD (NbN)	>100 M	> 80	<1	<20	~ 2.2 K
STJ (Al)	5 K	60	N/A	N/A	< 1K
TES (W)	100 K	95	~ 0	100 ns	0.1 K
InGaAs APD	100 M	20	16K	55	200 K
IR PMT	10 M	2	200 K	300	室温

SNSPD is a very competitive

Shanghai Center for SuperConductivity (SC²)

Applications

Deep Space Laser communication

中国科学院上海超导中心

u Single photon imaging u Laser ranging

u QKD

Alternative to APD/PMT

- u Fiber Sensing
- u IC testing
- u Biological fluorescence

200Km MDI-QKD

Shanghai Center for SuperConductivity (SC²)

Deep space laser communication

- ü 2013/9/6 LADEE launched ,
- 2013/10/18, moon satellite-earth communication demonstrated

中国科学院上海超导中心

Record-breaking distance of 380K KM

Download vs Upload :
 622 Mbps vs 20 Mbps

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

Content

n Quantum Information and SPD

n Introduction to SNSPD

n SNSPD for 1550 nm

n SNSPD for NIR to VIS

n Applications

Shanghai Center for SuperConductivity (SC²)

Our work

中国科学院上海超导中心

Device

Design & Process Detection Mechanism High Performance

 SNSPD
Physics &
Technology

 Material

 Ultra thin film growth
Growth mechanism
New materials

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

Structure Development

中国科学院上海超导中心

The key is to improve the photon absorption of the superconducting nanowire

Shanghai Center for SuperConductivity (SC²)

Improvement on absorption

中国科学院上海微系统与信息技术研究所

中国科学院上海超导中心

中国科学院上海微系统与信息技术研究所

High DE SNSPD @1550 nm

Shanghai Center for SuperConductivity (SC²)

中国科学院上海微系统与信息技术研究所

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

Content

n Quantum Information and SPD

n Introduction to SNSPD

n SNSPD for 1550 nm

n SNSPD for NIR to VIS

n Applications

Shanghai Center for SuperConductivity (SC²)

Wavelength Compatibility of optical structures 90 80 70 Absorption (%) 60 --- Dielectric mirr 50 D-side cavity Single cavity Au~100 nm 20SiO ~ 220 nm 6.5 nm NbN 1600 1700 1200 1300 1400 1500 WL (nm) SiO2~250 nm Ag ~ 100 nm SiO~220 nm 5 nm NbN ~ Si ~ 400 μm 5 nm NbN etme mirror \approx MgO - 400 μ m ≈ MgO ~ 400 μm SiO2 - 250 nm Si-400 µm w/o cavity **Single Cavity Double Cavity Dielectric Mirror** NIR VIS Absorption

中国科学院上海微系统与信息技术研究所

中国科学院上海超导中心

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

SNSPD at 1064nm

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

SNSPD for 945 nm

22

Shanghai Center for SuperConductivity (SC²)

SNSPD for 850 nm

中国科学院上海微系统与信息技术研究所

。 中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

SNSPD at 532nm aiming to SLR

Device design and performance

中国科学院上海超导中心

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

High DE SNSPD@ VIS&NIR

中国科学院上海微系统与信息技术研究所

中国科学院上海超导中心

Shanghai Center for SuperConductivity (SC²)

Content

n Quantum Information and SPD

n Introduction to SNSPD

n SNSPD for 1550 nm

n SNSPD for NIR to VIS

n Applications

Shanghai Center for SuperConductivity (SC²)

Demo---- MDI-QKD

SNSPD SDE > 40% @10 Hz DCR

First Demonstration of 200 km MDI-QKD in lab & 30 km MDI-QKD field test

Collaborated with JW Pan's Group in USTC Y. L. Tang et al. PRL 113(19): 190501. (2014) Y. L. Tang et al. IEEE STQE 21(3): 1 (2015)

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

Demo ---- Quan Source characteriz.

• Optics Express 22 000359 (2014)

中国科学院上海超导中心

• J. Opt. Soc. Am. B 31 (8), 1801-1806 (2014)

• Sci Rep 5: 9195. (2015)

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

Conclusion

- SNSPD matches the requirements of QI and
 - ü High SDE from VIS to NIR
 - ü Low DCR
 - ü Low jitter

中国科学院上海超导中心

P Niche market available for SNSPD

SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTOR

ID280 SUPERCONDUCTING NANOWIRE WITH 50% QUANTUM EFFICIENCY AND FASTEST ELECTRONICS

Other Companies:

- SconTel (Russia)
- Single Quantum (Netherlands)
- Ø Quantum Opus (USA)
- Ø Photon Spot (USA)

中国科学院上海微系统与信息技术研究所

Shanghai Center for SuperConductivity (SC²)

团队成员 Group Member

张伟君 博士 WJ ZHANG, PhD

i士 李浩博士 , PhD HLI, PhD

中国科学院上海超导中心

陈思井 博士 SJ CHEN, PhD

周慧 博士 H ZHOU PhD

杨晓燕 博士 XY YANG, PhD

张露 硕士 L ZHANG, MS