

Coated Conductors for Applications 2016 September 11-14, 2016, Aspen, Colorado, USA CCA2016

Update on the Developments of Coated Conductor High Field Magnets in Japan

<u>S. Awaji</u> HFLSM, IMR, Tohoku University

Acknowledgements

Yokoyama (Mitsubishi Electric Corporation) Yanagisawa and Maeda (RIKEN) Nakao, Mukoyama and Sakamoto (Furukawa Electric Corp.) Miyazaki and Koyanagi (Toshiba Corp.) Muto and Iijima (Fujikura)

Recent CC High Field Magnets in Japan

- > 25T cryogen-free superconducting magnet (Tohoku Univ.): MEXT
 - $24T(\phi 52mm RT)$, quench
- > 3T-MRI (Mitsubishi): AMED
 - MRI system, Get MRI images at 3 T (ϕ 300mm RT)
- > 9.5 T-MRI (Toshiba): AMED
 - 9.52T (\$40mm cold)
- > Accelerator for medical treatment (Toshiba, Kyoto-U, KEK): AMED
 - 3D winding
- 800 MHz(18.8T) and 1.3GHz(30.5 T) -NMR model (RIKEN, NIMS, JASTEC): JST
 - 27.6T (\$33mm cold), 27.7 T quench
- > 10T Flywheel magnet (Furukawa, JR): NEDO
 - 3.4T(ϕ 120mm RT), 300kW operation
- Scribed CC coil (Fujikura)

25 T-CSM combination test

IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. Presentation IO-07 given at CCA 2016; Aspen, Colorado, USA, September 11 – 14, 2016.

V, T, Vacuum profiles after quench

- Quench was detected due to the thermal runaway of HTS coil.
- 650 V x 2 at HTS coil was generated after the quench.
- Drop of I_{HTS} at 6 s past after the quench protection mode.
- Vacuum was deteriorated rapidly at the same time.
- The quench protection seems to work well al least for 6 s after the quench?

REBCO Magnet for 300 kW Flywheel

FURUKAWA ELECTRIC

Flywheel energy storage system (FESS) used superconducting magnetic bearing (SMB) was developed in the NEDO PJ in 2015

300 kW FESS prototype

Item	Specification			
Input/Output capacity	300kW			
Voltage	DC600 kV			
Storage Energy	100 kWh at 6000 rpm			
CFRP rotor dimension	2 m			
Rotor weight	3.2 ton			
Bearing; Thrust	SMB (REBCO)			
Radial	AMB			

Reference: S. Mukoyama et al., 'Development of Superconducting Magnetic Bearing for 300 kW Flywheel Energy Storage System' ASC 2016 in Denver USA, 4LOr3B-02

Superconducting magnetic bearing

FURUKAWA ELECTRIC

Item	Specification			
Wire	REBCO (Superpower)			
Width of tape	6 mm			
Thickness of tape	0.1 mm			
Inner diameter	120 mm			
Outer diameter	260 mm			
Height of the coil	17.6 mm			

Field test in the mega-solar plant

FURUKAWA ELECTRIC

Technical Issues of RE123 Coated conductor

Degradation due to delamination

- Polyimide electric-coating (Riken)
- Wax impregnation (Furukawa, Riken)
- Teflon coated polyimide (Toshiba, Mitsubishi)
- Dry winding
- 2) Quench protection against hotspot
 - Dump resistor (most cases)
 - Quench heater (NHMFL, USA)
 - 3) Reduction of magnetic field quality due to shielding (magnetization) current
 - Prediction and rearrange
 - Magnetic field monotor
 - Scribe (Fujikura)

Summary

Item	Purpose	Bmax	Jcon	Inner dia.	Тор	Winding	Delamination	Shealding current	Protection	Comments
Unit		Т	A/mm2	mm	K					
RIKEN	Proto-type NMR	27.6 (28)	396	40	4.2	Layer	Wax impregnation	Overshoot	Dump resistor	Quench at 27.7T
Tohoku U.	User magnet	24.0 (24.5)	222	90	7	SP	Teflon coated Polyimide	Field monitor	Dump resistor & Large margin	Quench at 24T
Mitsubishi	MRI	4.5	212	320	20	DP	Teflon coated Polyimide	Overshoot	Dump resistor	MRI Image
Furukawa	300kW FW	3.4	130	120	30-50	DP	Wax impregnation	-	Dump resistor	Yoroi
Toshiba	R&D for MRI	13.5	689	40	(20)	SP	Teflon coated Polyimide	-	-	B-distribution at 130A(6.2T)

- ✓ A few prototype applications using CC were developed successfully.
- ✓ Critical issues of CC for magnets are being improved recently. But some high field magnet developments were failed due to the local degradation of the CC. Those may be originated from the thin layered tape structures. This problem is a critical issue to be clarified.