Root cause of large grain A15 formation in Powder In Tube Nb₃Sn conductors

Chris Segal September 5th, 2016

Applied Superconductivity Conference, Denver, CO

Student Paper Competition

L. Bottura 2015

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. ASC 2016 paper 2MPo1C-07. ASC Victor Keilin Memorial Prize Winner.

The FCC playground

LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi HE-LHC 27 km, **20 T** 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS

FCC-hh 80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS

FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-²Ti

The practical HiLumi Nb₃Sn wire is in production!

Looking to the future FCC wire

4

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. ASC 2016 paper 2MPo1C-07. ASC Victor Keilin Memorial Prize Winner. The Fractional Real Estate of PIT – only 40% is valuable

- Wire diameter: 0.78mm
- Filament diameter: 39 μm
- HT from BEAS:
- 620/100 + 640/120

 $J_{c-layer} = 5564 \text{ A/mm}^2$

Residual Nb – 23.4%

Small Grain A15 – 40.2%

Large Grain A15 – 13.3%

Remnant Core A15 – 2.5%

Residual Core Cu & void – 20.6%

5 µm

- Only small grain A15 carries current
 - Large and core grains of A15 do not carry any current (seen on next slide)

Can large grains really carry current?

Why does the LG form? Can we manage it's formation? Here we look at the phase evolution

LG A15 appears very disconnected

Cu-rich phases penetrate between LG's

630C200h Billet B29992 Longitudinal Cross Section

[1] C. Tarantini, C. Segal, Z. H. Sung, P. J. Lee, L. Oberli, A. Ballarino, L. Bottura, and D. C. Larbalestier, "Composition and connectivity variability of the A15 phase in PIT Nb3Sn wires," *Supercond. Sci. Technol.*, vol. 28, no. 9, p. 95001, Sep. 2015.

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2016. ASC 2016 paper 2MPo1C-07. ASC Victor Keilin Memorial Prize Winner. Furnace set up for sample quenching

- Samples are pulled out of the furnace and quenched in cold water, indicated by vertical lines in the plot to the right.
- This rapid cooling 'freezes' the microstructure at the reaction temperature, allowing examination of phases and chemical compositions which are present.

Sn is rapidly absorbed by Cu sleeve to form η early in the reaction

225 °C

260 °C

η transforms to ε at 408°C, Nausite grows as a continuous layer

450°C 400°C T(°C) 676 °C Cu 600 liquid 500 $\varepsilon + liquid$ 415° 400 Nb Nb $\eta + liquid$ 232°C Sn n' + Sn10 20 50 60 70 80 Nausite , Line Nausite Cu

- Thin, continuous ring of Nausite between Nb and the layer of η/ϵ phase.
- Since η decomposes at 415°C, ϵ begins forming

- η has entirely transformed into ε phase
- Nausite ring rows

9

Nausite decomposes above 560 °C and by 610 °C the Sn rich layer is entirely NbSn₂ $520^{\circ}C \rightarrow 560^{\circ}C$ $610^{\circ}C$

Nausite ring grows

Full layer of NbSn₂ forms from Nausite expelling Cu¹⁰

At 630°C NbSn₂ rapidly transforms into Nb₆Sn₅

0 minutes

30 minutes

- The transformation occurs quickly; about 45 minutes at 630°C
- The Nb₆Sn₅ contains a few at% Cu

Continuous layer of small grain Nb₃Sn is formed by 5 hours 630°C - 5hr 630°C - 10hr

Nb₆Sn₅ draws Sn from core to Nb barrier

• Nb₃Sn layer has grown

LG A15 has formed with the ejection of Cu by Nb₆Sn₅

630°C - 12hr

• What role does Cu play in the reaction?

- Large grains of A15 are a continuous layer.
- All of the large grains are surrounded by a Curich phase
- There is a continuous layer of large grain A15 and penetrating Cu. A small amount of Nb₆Sn₅ remains

The Fractional Real Estate of PIT

- Wire diameter: 0.78mm
- Filament diameter: 39 μm
- Optimal HT from BEAS: 620/100 + 640/120

• $I_c = 501 \text{ A}$ • $J_{c \text{ non-Cu}} = 2237 \text{ A/mm}^2$ • $J_{c-layer} = 5564 \text{ A/mm}^2$ Residual Nb – 23.4%

Small Grain A15 – 40.2%

Large Grain A15 - 13.3%

Remnant Core A15 – 2.59

Residual Core – 20.6%

5 μm

- Only small grain A15 carries current
- Large and core grains of A15 do not carry any current.

Can we convert the poorly connected large grains and core grains of A15 into current carrying small grain A15 phase by only altering the heat treatment?

LG A15 formation is temperature dependent

Only SG A15 has formed

LG A15 has nucleated with Cu

SG A15 forms *first* by Nb_6Sn_5 reacting with the tube. LG A15 forms by decomposition of Nb_6Sn_5 .

- After 5 hours at 670°C, there is nearly a 2 µm thick layer of SG A15 as the LG forms
 - We do not believe that LG A15 forms directly from the tube material

Can a multistep heat treatment suppress LG formation?

Microstructure is improved using multistep HT's!

Step A + 630 °C 13h – 2.2 µm SG layer thickness!

Refining multistep HT's increased SG layer thickness early in reaction

50% improvement!

5 µm

Previous HT's630/120.8 μm670/52.0 μmA+630/132.2 μmC+630/103.0 μm

*Steps are at higher temperatures

Step C + 630 °C 10h – 3.0 µm SG layer thickness!

Multistep Heat Treatments do well converting core and LG A15 to more SG A15

- Sample B31284, 0.78mm wire
- Heat treatments done at ASC
- Critical current measurements on short samples (~ 4cm) at 12T, 4.2K

	Heat treatment	Heat treatment	1 (^)	J _c	J c SG-laver		Total	core	LG	SG
	description	(temp/soak time)	_c (A)	(A/mm^2)	(A/mm^2)	Nb	A15	A15	A15	A15
BI	EAS recommended	620/100+640/120	501	2237	5564	23.4%	56.0%	2.5%	13.3%	40.2%

Why?

The steps before soaking at 630°C are higher temperature
 – producing larger grains of SG A15 than BEAS
 recommended HT

Summary of LG formation experiments

- Initial low temp HT at 630°C creates a thin layer of SG A15 before LG's nucleate from the Nb₆Sn₅. (0.85μm)
- At higher temperatures (670°C), this SG layer is 2x it's low temp counterpart. (1.98 μm)
- Using multistep HT (630°C- 690°C), we can get 3x the layer thickness without LG forming
 (3.0 µm)

The two main A15 morphologies form by different reaction paths

- Small grains of A15 form by Nb₆Sn₅ feeding Sn into the Nb(Ta) diffusion barrier.
 - SG A15 ALWAYS forms first.
- Large grains of A15 form mostly by decomposition of Nb₆Sn₅ in the core after some critical exhaustion point in the reaction.

More SG A15 forms with higher temperature reactions

- High temperature reactions tend to reduce core grains by allowing more of the Sn source in the core to react with the Nb-7.5wt.%Ta tube
 - Quench experiments show this happens in the early hours of the reaction
 - A short, high temperature spike early on gives the same effect even when soaking at low temperature for most of the reaction

We believe under these novel multistep heat treatments, the filaments can utilize more Sn efficiently, and by changing the ratio of Nb/Sn/Cu in the core, it may be possible to prevent the core Nb from nucleating large grains of A15 and drive up J_c.

Acknowledgements

David Larbalestier Peter Lee Chiara Tarantini

2MPo1C-07[166]

Amalia Ballarino Luca Bottura Christian Scheuerlein Bernardo Bordini

Klaus Schlenga Bernd Sailer Manfred Thoener

This work was supported by the National High Magnetic Field Laboratory (which is supported by the National Science Foundation under NSF/DMR-1157490), the State of Florida, and CERN under grants KE1920/TE and RF02226

End of Presentation

675°C reacted for 4 hours – a much thicker SG layer has formed

This SG A15 layer looks much thicker than mine at 630 °C 12 hours...does the LG A15 form differently as a function of reaction temperature?

C. D. Hawes, "Investigations of the Inhomogeneity of a Powder-In-Tube Nb₃Sn Conductor," University of Wisconsin -Madison, 2000. large grain has formed