



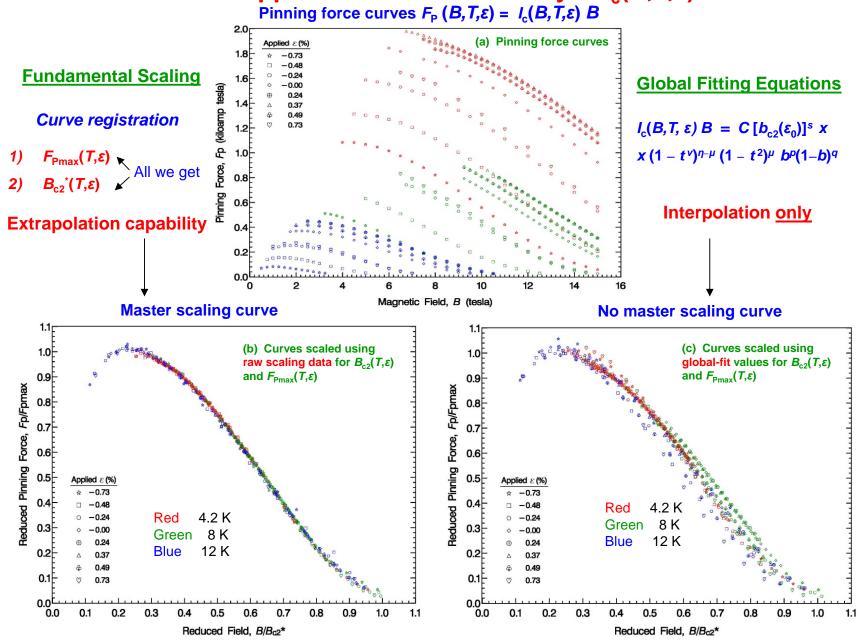
### **Extrapolative Scaling Expression:**

## A fitting equation for extrapolating full $I_c(B,T,\varepsilon)$ data matrixes from limited data

Jack Ekin, Najib Cheggour, Loren Goodrich, Jolene Splett NIST, Univ. Colorado - Boulder

Bernardo Bordini, David Richter, and Luca Bottura CERN – Geneva

Presented at the 2016 Applied Superconductivity Conference Denver, CO September 5-9, 2016




#### **Organization of Talk**

- 1. Context for Extrapolative Scaling Expression (ESE, or "easy")
  - Result of three SUST invited topical reviews:
    - Part 1 Organization of many parameterizations of USL into separable parts
    - Part 2 Derivation of ESE from raw scaling data (>  $4000 I_c$  measurements)
    - Part 3 Applications
- Focus on new extrapolation capabilities made possible with ESE
   Emphasis on concatenation of errors (not included in SUST articles)
   Illustrate with practical conductors: HL-LHC, ITER, NMR cryo-cooled magnets
- 3. Suggestions for future research



#### Two approaches in use to analyze $I_c(B,T,\varepsilon)$





#### ESE is a fitting equation for the 3-dimensional $I_c(B,T,\varepsilon)$ , which is:

- 1. Derived from an extensive one-time analysis of raw scaling data.
- 2. But simply applied as a fitting equation (without analyzing raw scaling data).
- And, unlike present fitting equations, it has the <u>extrapolation capability</u> of fundamental scaling. (Reason? – based on master scaling curves; it is not empirical or semi-empirical)

Because no theoretical assumptions were made in its derivation, the results also serve to evaluate underlying semi-theoretical models for general par. of USL



#### Derivation of the Extrapolative Scaling Expression (ESE)

#### **True Scaling**

#### Registration gives:



Extrapolation capability

#### Three scaling constants:

$$W = 3.0 \pm 0.03$$
  
 $V = 1.5 \pm 0.04$ 

$$u = 1.7 \pm 0.1$$

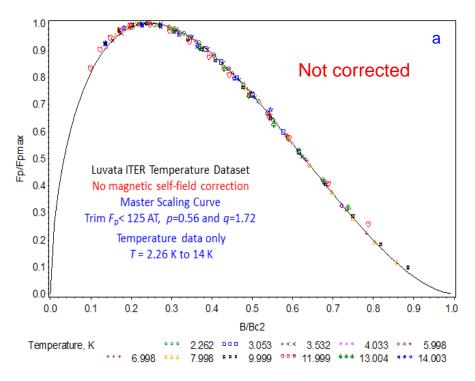
#### **ESE Fitting Equation**

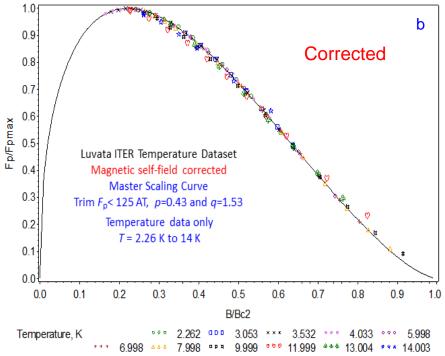
$$I_{c}(B,T,\mathbf{\epsilon}) \ B = C \ b_{c2}(\mathbf{\epsilon})^{s} \ (1-t^{1.5})^{\eta-\mu} (1-t^{2})^{\mu} \ b^{p}(1-b)^{q}$$
  
reduced variables:  $b \equiv B/B_{c2}^{\phantom{c2}*}(T,\mathbf{\epsilon})$  and  $t \equiv T/T_{c2}^{\phantom{c2}*}(\mathbf{\epsilon})$   
where:  $B_{c2}^{\phantom{c2}*}(T,\mathbf{\epsilon})/B_{c2}^{\phantom{c2}*}(0,0) = (1-t^{1.5}) \ b_{c2}(\mathbf{\epsilon})$   
 $T_{c}^{\phantom{c}*}(\mathbf{\epsilon}) = T_{c}^{\phantom{c}*}(0) \ b_{c2}(\mathbf{\epsilon})^{1/3}$ 

- Extrapolation capability
- But, in an easy way

#### **Stable with respect to:**

- conductor type
- trim factors
- p and q values
- magnetic self-field correction





#### Magnetic Self-field Correction

Needed for comparisons -- short-sample data, different apparatus, magnetization

#### Large effect on flux-pinning curve, BUT:

- 1.  $F_P$  curves <u>still scale</u> into master curve
- 2. Scaling constants w, v, and u unchanged by SF correction







#### Bottom line: raw scaling analysis gives:

Extrapolative Scaling Expression (ESE), the "easy" fit.

#### Most useful form:

$$I_{c}(B,T,\varepsilon) B = C b_{c2}(\varepsilon)^{s} (1-t^{1.5})^{\eta-1} (1-t^{2}) b^{p} (1-b)^{q}$$

where  $b \equiv B/B_{c2}^*(T,\varepsilon)$  is the reduced field, and  $t \equiv T/T_c^*(\varepsilon)$  is the reduced temperature

$$B_{c2}^{*}(T,\varepsilon)/B_{c2}^{*}(0,0) = (1-t^{1.5}) b_{c2}(\varepsilon)$$

$$T_{\rm c}^*(\varepsilon) = T_{\rm c}^*(0) b_{\rm c2}(\varepsilon)^{1/3}$$

and fitting parameters  $C \& B_{c2}^*(0,0)$ , and 4 core parameters  $T_c^*(0)$ , s,  $\eta$ , &  $C_1$  (in  $b_{c2}(\varepsilon)$ ).



# <u>Hybrid</u> temperature models with $\eta$ fitted (Durham) and $\mu = 1$ (Twente) have the following advantages:

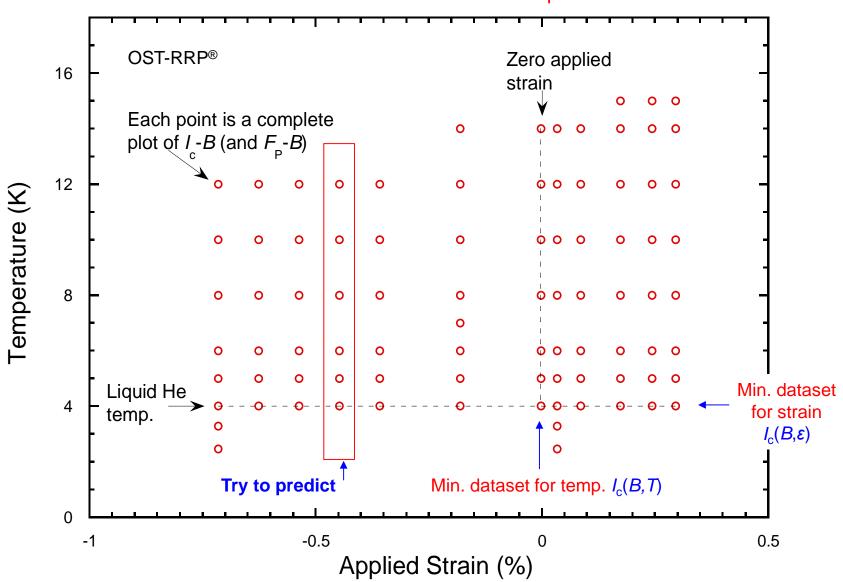
- Overall fitting accuracy
- Parameter consistency ( $\eta$  variability < half that of  $\mu$ )
- *Extrapolation* capability to temperatures *below 4 K* (~1 % errors)

#### <u>Exponential</u> strain model for $b_{c2}(\varepsilon)$ :

- One fitting parameter  $C_1$  (strain sensitivity index, default values)
- 3-D strain capability
- *Extrapolation* capability to high compressive strains

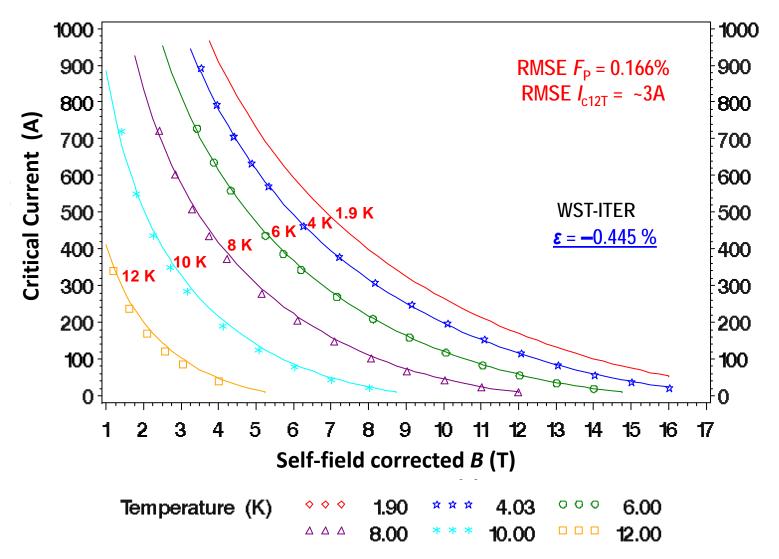


#### Applications of the Extrapolative Scaling Expression (ESE)


N.B. -- Fitting  $F_{P'}$  not  $I_c$ . Errors consistently one-fifth!

Extrapolation capability in four new areas:

- $\rightarrow$  1. Five-fold reduction in measurement space: extrapolate minimum dataset (reduces weeks for full  $I_c(B-T-\varepsilon)$  measurements to a few days)
  - 2. Combination of data from separate T and  $\varepsilon$  apparatuses (offers flexibility and productive use of limited data)
  - 3. Full  $I_c(B, T, \varepsilon)$  extrapolation from as little as a single  $I_c(B)$  curve (useful for production sample measurements, e.g., HL-LHC, FCC)
  - 4. Interpolation with option for nearby extrapolations (with *default core* parameters)


### Minimum Dataset for extrapolating full $I_c(B,T,\varepsilon)$ characteristics – derived from scaling Visualize with $T-\varepsilon$ measurement map

5-fold reduction in measurement space





#### Minimum dataset extrapolation with ESE-Hybrid model





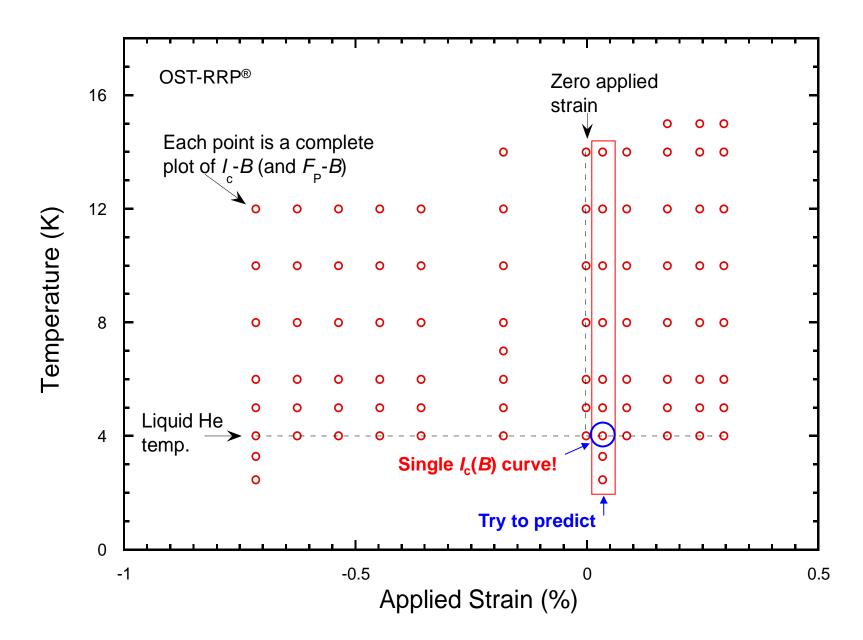
#### Applications of the Extrapolative Scaling Expression (ESE)

Extrapolation capability in three new areas:

- 1. Five-fold reduction in measurement space for unified B-T- $\varepsilon$  apparatuses (reduces weeks for full  $I_c(B$ -T- $\varepsilon$ ) measurements to a few days)
- $\rightarrow$  2. Combination of data from separate T and  $\varepsilon$  apparatuses (offers flexibility and productive use of limited data)
  - 3. Full  $I_c(B, T, \varepsilon)$  extrapolation from as little as a single  $I_c(B)$  curve (useful for production measurements, e.g., HL-LHC, FCC)
  - 4. Interpolation with option for nearby extrapolations with <u>default *core* parameters</u>

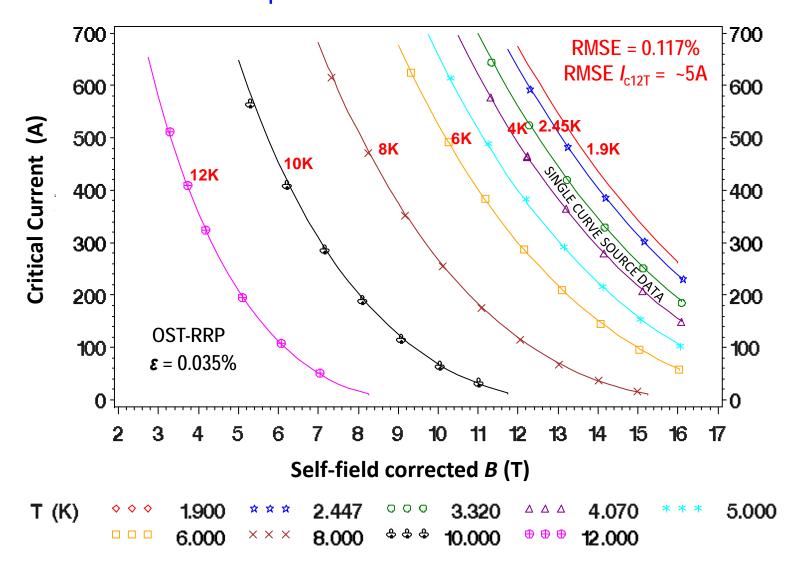


#### Combining limited datasets (examples in Part 3)


Core parameters – depend only on ratios of raw scaling data. Very stable.

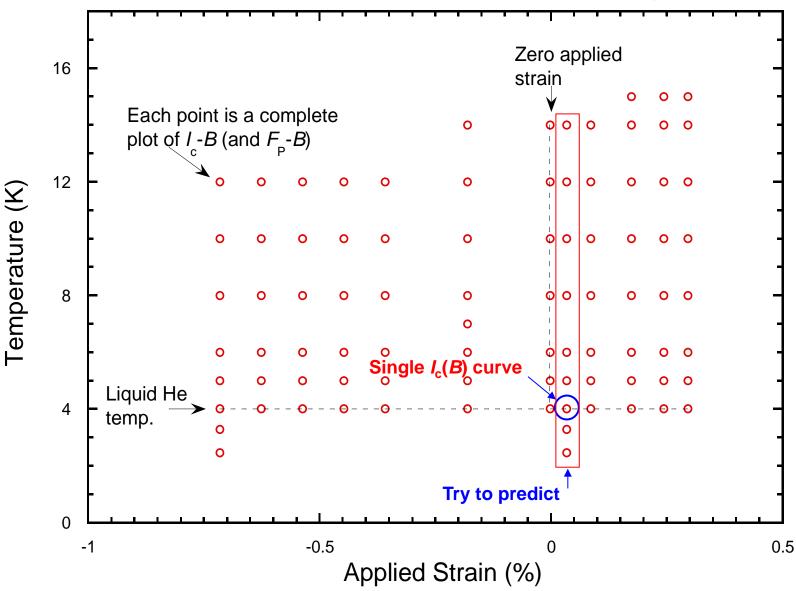
<u>Transfer among similar conductors</u> (same comp., config, and heat treatment)

| Available data                                                                    | Parameters determined |           |                |          |   |          |             |          |  |  |
|-----------------------------------------------------------------------------------|-----------------------|-----------|----------------|----------|---|----------|-------------|----------|--|--|
|                                                                                   |                       |           |                |          |   |          |             |          |  |  |
|                                                                                   | C                     | Bc2*(0,0) | $T_{c}^{*}(0)$ | η        | 5 | bc2(€)   | p           | q        |  |  |
| $I_c(B,T,\varepsilon)$ (unified $T,\varepsilon$ apparatus)                        | <b>V</b>              | <b>V</b>  | V              | ✓        | V | ~        | <b>V</b>    | ~        |  |  |
| $I_{c}(B,T)$ fixed $\varepsilon$ (dedicated $T_{c}$ rig)                          | <b>~</b>              | <b>√</b>  | <b>~</b>       | <b>✓</b> |   |          | <b>√</b>    | <b>~</b> |  |  |
| Min. dataset $I_c(B,\varepsilon)$ fixed $T$ (dedicated $\varepsilon$ rig)         | ~                     | ~         |                |          | ~ | <b>✓</b> | <b>(√</b> ) | ~        |  |  |
| $I_c(I)$ fixed $B,\varepsilon$ (dedicated $I$ nig)                                | ~                     |           | V              | 1        |   |          |             |          |  |  |
| $I_c(\varepsilon)$ fixed $B,T$ (dedicated $\varepsilon$ rig)                      | 1                     |           |                |          |   | <b>V</b> |             |          |  |  |
| $I_c(B)$ fixed $I_c \in P$ (routine $I_c \in P$ testing)<br>Single $I_c(B)$ curve | 1                     | 1         |                |          |   |          | <b>(</b> ✓) | V        |  |  |
| $I_c$ fixed $B, T, \varepsilon$ (routine $I_c$ testing)                           | ~                     |           |                |          |   |          |             |          |  |  |

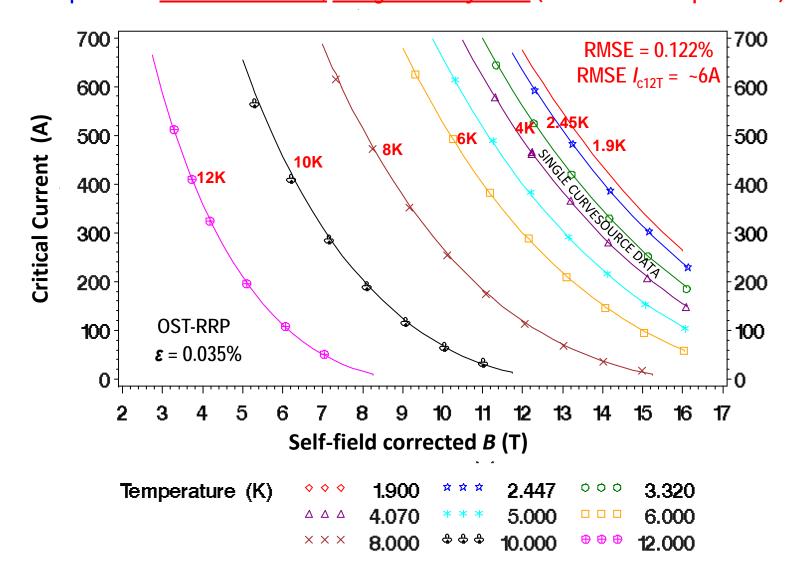


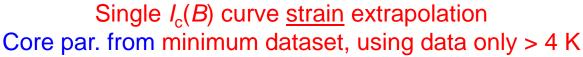

#### Single $I_c(B)$ curve extrapolation

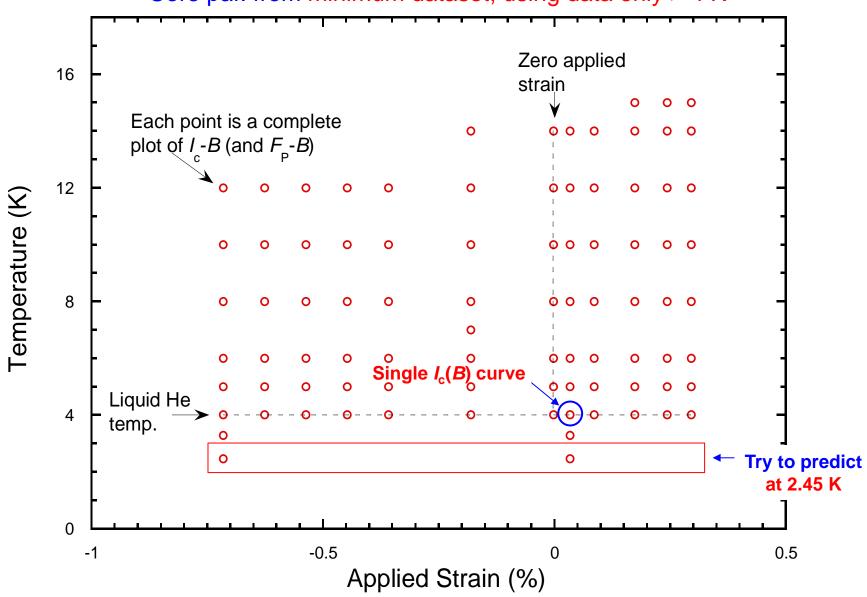




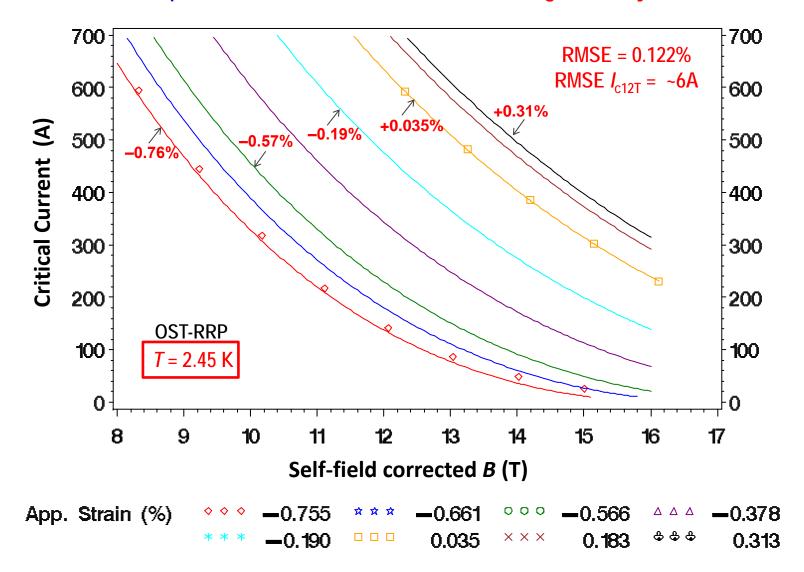

#### Single $I_c(B)$ curve extrapolation From point in T- $\varepsilon$ map at 4.07 K and 0.035 % strain Core parameters from minimum dataset





Single  $I_c(B)$  curve extrapolation Core parameters from min. dataset with data only > 4 K




### Single $I_c(B)$ curve extrapolation from 4.07 K and 0.035 % strain Core par. from minimum dataset, using data only > 4 K (combine 3 extrapolations)







#### Single $I_c(B)$ curve <u>strain</u> extrapolation\_from 4.07 K and 0.035 % strain Core parameters from minimum dataset, using data only > 4 K





#### Caveats:

- 1. Evaluated intrinsic errors for predicting the <u>non-core</u> parameters from a single  $I_c(B)$  curve
- 2. Extrinsic errors need to be minimized. *Core* parameters determined from:
  - Samples with similar configuration, doping, and heat treatment (e.g., production samples).
  - Similar sample holders (minimize strain variability)
     Matching material preferred (thermal contraction strain)
     Continuously soldered preferred to provide good F<sub>L</sub> support
     Cu-Be holders easy solution (avoids unsupported conductor settling)
  - → If control extrinsic errors, such extrapolations quite effective for similar conductors.



#### Applications of the Extrapolative Scaling Expression (ESE)

Extrapolation capability in three new areas:

- 1. Five-fold reduction in measurement space for unified B-T- $\varepsilon$  apparatuses (reduces weeks for full  $I_c(B$ -T- $\varepsilon$ ) measurements to a few days)
- 2. Combination of data from separate T and  $\varepsilon$  apparatuses (offers flexibility and productive use of limited data)
- 3. Full  $I_c(B, T, \varepsilon)$  extrapolation from as little as a single  $I_c(B)$  curve (useful for production measurements, e.g., HL-LHC, FCC)
- → 4. Interpolation with option for nearby extrapolations with <u>default core parameters</u> when data limited



**Table Al.1.** The ESE parameter set, with Hybrid h(t) and the <u>Exponential</u> parameterization of  $bc2(\epsilon)$  for data not corrected for magnetic selffield.

| Nb₃Sn<br>Conductor | C (AT) | Bc2*(0,0)<br>(T) | Γ <sub>c</sub> *(0) (K) | η     | 5     | ε10** <u>†</u><br>(%) | $C_1$ | $p^{\dagger}$ | $q^{\dagger}$ | RMSFD<br>(%) | RMS<br>(%) |
|--------------------|--------|------------------|-------------------------|-------|-------|-----------------------|-------|---------------|---------------|--------------|------------|
| OST-RRP®           | 50,514 | 29.09            | 16.94                   | 2.254 | 1.150 | -0.355                | 0.748 | 0.5           | 2.061         | 9.0          | 0.120      |
| WST-ITER           | 21,015 | 31.02            | 16.81                   | 2.025 | 1.388 | -0.302                | 0.817 | 0.573         | 1.834         | 4.8          | 0.114      |
| LUVATA             | 14,955 | 29.70            | 16.43                   | 1.966 | 1.4   | -0.321                | 0.657 | 0.562         | 1.703         | 2.0          | 0.078      |
| VAC                | 7,631  | 29.91            | 16.84                   | 2.002 | 1.097 | -0.313                | 0.923 | 0.480         | 1.445         | 4.6          | 0.247      |
| EMLMI              | 11,920 | 30.79            | 17.02                   | 2.380 | 0.874 | -0.271                | 1.139 | 0.5           | 1.835         | 3.6          | 0.170      |

**Table A1.2.** The ESE parameter set, with Hybrid h(t) and the Invariant parameterization of  $b \in (\varepsilon)$  for data not corrected for magnetic selffield.

|                                        |        | Core Scaling Parameters |            |       |       |             |       |                       |       |                               |               |              |            |
|----------------------------------------|--------|-------------------------|------------|-------|-------|-------------|-------|-----------------------|-------|-------------------------------|---------------|--------------|------------|
| Nb <sub>3</sub> Sn C<br>Conductor (AT) |        | Bc2*(0,0) (T)           | Tc*(0) (K) | η     | S     | εm**<br>(%) | c2    | <i>c</i> <sub>3</sub> | C4    | $p^{\uparrow}$ $q^{\uparrow}$ | $q^{\dagger}$ | RMSFD<br>(%) | RMS<br>(%) |
| OST-RRP®                               | 47,954 | 27.58                   | 16.65      | 2.252 | 1.210 | 0.302       | 1.016 | 0.717                 | 0.183 | 0.5                           | 2.061         | 7.3          | 0.104      |
| WST-ITER                               | 19,772 | 29.62                   | 16.53      | 2.023 | 1.356 | 0.305       | 0.823 | 0.424                 | 0.118 | 0.577                         | 1.855         | 4.5          | 0.106      |
| LUVATA                                 | 14,166 | 28.60                   | 16.21      | 1.966 | 1.4   | 0.323       | 0.660 | 0.669                 | 1.136 | 0.562                         | 1.709         | 2.0          | 0.082      |
| VAC                                    | 7,654  | 28.92                   | 16.45      | 1.972 | 1.040 | 0.311       | 0.893 | 0.376                 | 0.053 | 0.512                         | 1.549         | 4.5          | 0.219      |
| EMLMI                                  | 11,419 | 28.81                   | 16.71      | 2.405 | 0.851 | 0.273       | 1.051 | 0.610                 | 0.258 | 0.5                           | 1.883         | 3.6          | 0.156      |



#### **Default Core Parameters**

Survey of core values for fully optimized ternary high- $J_c$  Nb<sub>3</sub>Sn  $\rightarrow$  average default values:

```
T_c^*(0) = 16.7 \text{ K}

\eta = 2.0 \text{ (ITER)} - 2.2 \text{ (RRP)}

s = 1.2 \text{ (RRP)} - 1.4 \text{ (ITER)}

p = 0.5 \text{ and } q = 2.0.
```

Additional meas. → "catalog" by generic conductor category (e.g., Ti vs. Ta doping, RRP, internal Sn, etc.)



#### **Future Work**

Immediate need: (huge dividends)

1. \* Measure  $I_c(B,T)$  above 4.2 K for at least one conductor of the RRP and PIT production wires for the Hi-Lumi (to obtain  $T_c^*$  and  $\eta$ ).

#### Longer term:

- 2. Compile <u>core</u> parameters in different types of Nb<sub>3</sub>Sn <u>catalog values</u>
- 3. Evaluate accuracy of ESE in extreme regions of *B-T-ε* space for magnet modeling
- 4. Magnetization vs. transport I<sub>c</sub> data
- 5. Assess if scaling constants hold for <u>artificial-pinning-center architectures</u>
- 6. ESE relationship for BSCCO, MgB<sub>2</sub>, Nb<sub>3</sub>Al, YBCO? (master curve  $\rightarrow$  extrapolation)

#### **Conclusion**

- ESE is based on fundamental raw scaling data
- But unlike fundamental scaling, applied as a fitting equation—quick, straightforward
- Simple, robust, and
- Can interpolate and <u>extrapolate</u> with excellent accuracy → significant time savings

Excel source data & ESE spreadsheet tool at <a href="https://www.ResearchMeasurements.com">www.ResearchMeasurements.com</a> SUST invited topical review articles