

Development of strong and isotropic BaZrO₃ artificial pinning centers in YBCO films

Shihong Chen, Bibek Gautam, Jack Shi, Jamie Wilt, and Judy Wu University of Kansas, USA Mary Ann Sabestian, and Timothy J. Haugan U.S. Air Force Research Laboratory, USA

Sponsored by National Science Foundation

Outline of this talk

Introduction

- Effect of Interfacial strain on the self-assembly of artificial pinning centers (APCs)
- Quantitative explain, predict and control the pinning landscape

Development of strong 3D BZO APCs in YBCO

- Vicinal + BZO variable concentration
- Y_2O_3 +BZO variable concentration
- Low T growth BZO/YBCO + high-T post-anneal

Summery

Goal: strong and isotropic pinning

Artificial Pinning Centers (APCs) landscape

а

Exciting progress has been made in strain mediated self-assembly of APCs with different morphology

Matsumoto and Mele, topic review on Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors, Supercond. Sci. Technol. 23 (2010) 014001;

Obradors et al, topic review on Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions, Supercond. Sci. Technol. 25 (2012) 123001

Strain-mediated self-assembly of APCs in epitaxial

YBCO matrix: Interfacial Strain Effect

Oxygen deficient column around the BZO/YBCO strained interface-semicoherent

Two kinds of strained interfaces involved in self-assembly:
Dopant/YBCO matrix interface (two different kinds may exist in double doping case)—local
YBCO matrix/substrate interface—global

Understanding the Interplay of strains is important towards controlling APCs

Specific questions:

- Morphology: What impurity materials will form aligned nanorods (1D APCs) or nanosheets (2D APCs) and nanoparticles (3D APCs) in YBCO matrix?
- **Dimension**: What determines the dimension of the APCs?
- Orientation: What determines their orientations?
- Strong and isotropic: how to obtain 3D pinning landscape?

Approaches:

Modeling + fabrication + characterization

Correlating Effect of doping concentration and film/substrate strains on nanorod morphology

F.J. Baca, et al, Adv. Funct. Mat. 23, 4628, (2013); J. Wu, et al, *IEEE Trans. Applied Superconductivity* 25, 1-5 (2015); J. Wu et al, SUST 28, 125009 (2015). J. Shi and J.Z. Wu, *Philosophic Magazine* 92, 2911 (2012); 92, 4205 (2012).; J.Z. Wu, Endless Quests -- Theory, Experiment and Application of Frontiers of Superconductivity, Peking University Press (2015).

BZO nanorods switch from c-aligned to abaligned by introducing lattice mismatched substrates

BZO vol. concentration	2%	4%	6%	•	•	• •	•	
Nanorod spacing (nm)	$10.8\pm3.2~\text{nm}$	$6.0\pm2.7~\text{nm}$	$4.4\pm0.7~\text{nm}$	•	•	•	•	•
Nanorod diameter (nm)	$5.2\pm0.5~\text{nm}$	$5.8\pm0.6~\text{nm}$	$5.9\pm0.9~\text{nm}$		•	•	•	

Overlap of the strained matrix around BZO nanorods occurs at around ρ ~45% volume portion

 Wu, Judy; Shi, Jack, Baca, Javier; Emergo, Rose;
 Wilt, Jamie; Haugan, Timothy, "Controlling BZO Nanostructure Orientation in YBCO Films for Three-Dimensional Pinning Landscape",
 Supercond. Sci. Technol, 28, 125009 (2015).

Alignment switch at higher doping levels (nonvicinal)

S. Nagao et al, Physica C 470, 1304 (2010)

A switch of BZO and BSO nanorods from c-align to ab-align occurs at large doping level

Correlating Effect of doping concentration and film/substrate strains on nanorod morphology

F.J. Baca, et al, Adv. Funct. Mat. 23, 4628, (2013); J. Wu, et al, *IEEE Trans. Applied Superconductivity* 25, 1-5 (2015); J. Wu et al, SUST 28, 125009 (2015). J. Shi and J.Z. Wu, *Philosophic Magazine* 92, 2911 (2012); 92, 4205 (2012).; J.Z. Wu, Endless Quests -- Theory, Experiment and Application of Frontiers of Superconductivity, Peking University Press (2015).

BZO nanorods switch from c-aligned to abaligned by introducing lattice mismatched substrates

Local + Global strains: splay around c-axis and switch from c to ab orientation of BaZrO₃ and BaSnO₃ nanorods

Baca et al. Appl. Phys. Lett. **94**, 102512 (2009); Emergo et al, SUST **23**, 115010 (2010); Wu et al, IEEE Applied Superconductivity 25 (3), 1-5 (2015). Wu et al, SUST 28, 125009(2015)

Enhancement of J_c in 3D BZO APC doped YBCO films

Overall enhanced J_c in all H directions in BZO doped YBCO possibly due to 1) reduced strain on YBCO; 2) mixed orientations of BZO APCs

Correlating Effect of doping concentration and film/substrate strains on nanorod morphology

F.J. Baca, et al, Adv. Funct. Mat. 23, 4628, (2013); J. Wu, et al, *IEEE Trans. Applied Superconductivity* 25, 1-5 (2015); J.
Wu et al, SUST 28, 125009 (2015). J. Shi and J.Z. Wu, *Philosophic Magazine* 92, 2911 (2012); 92, 4205 (2012).; J.Z.
Wu, Endless Quests -- Theory, Experiment and Application of Frontiers of Superconductivity, Peking University Press (2015).

BZO nanorods switch from c-aligned to abaligned by introducing lattice mismatched substrates

Global strain adds additional tuning parameter on nanorod morphology through interaction with the local strain field

Wu et al, SUST 28, 125009(2015)

Much smaller reduction in T_c in vicinal samples indicates reduced strain on YBCO lattice—favorable to high Jc

Wu et al, SUST 28, 125009(2015)

Wu et al, SUST 28, 125009(2015)

Effect of APC concentration and growth temperature on the 1D APC diameter

 χ is the ratio of nanorod diameter to center-to-center distance.

triangle: Varanasi et al, (2008); square: Mele et al, (2009); circle: Baca, (2009). large circle: Goal et al, (2005); star: Wu et al, (2014); diamond: Selvamanickam et al, (2015). cross: Tobita et al, (2012).

Wu, et al, Supercond. Sci. Technol, **27**, 044010 (2014); Shi and Wu, JAP **118**, 164301 (2015).

Diameter of Nanorods remains a constant

Increased nanorod density with increased dopant concentration

BZO vol. concentration	2%	4%	6%	•	•		• •		
Nanorod spacing (nm)	$10.8\pm3.2~\text{nm}$	$6.0\pm2.7~\text{nm}$	$4.4\pm0.7~\text{nm}$	•	•	•	•	. •	•
Nanorod diameter (nm) 🧲	$5.2\pm0.5~\text{nm}$	$5.8\pm0.6~\text{nm}$	$5.9\pm0.9\text{nm}$	> •		•	•	•	

The diameter of the nanorod is determined by the semicoherent "ultrathin" interface between the dopant and matrix and is almost a constant at low to moderate doping level

Temperature Effects in Nanorod Formation

- Y₂O₃ hinders c-axis aligned BZO nanorods formation
- Large amount of small-size BZO APCs may not be even visible

Two approaches to develop 3D BZO APCs:

- BZO+Y₂O₃/YBCO at high BZO concentration
- Low T growth BZO/YBCO + high-T post-anneal

Significantly enhanced overall Jc and Fp in 6% BZO+Y2O3/YBCO samples

Much reduced Jc anisotropy observed in 6% BZO+Y2O3/YBCO samples

Chen et al, submitted

Besides overall high Fp in 6% BZO+Y2O3, the low 1-P value at 45 deg orientation indicates 3D BZO APCs can be strong pins at low temperatures

Gautum et al, preprint

Figure 2 a,b,c,d

Post anneal at 825 C promotes growth of weak 0D BZO-APC to strong 3D BZO-APCs

 \bigcirc

Besides higher J_c and F_p values, strong 3D BZO-APCs also improve isotropic J_c

Gautum et al, preprint

Summary

Understanding the Interfacial strain (local and global) provides means to control APC's morphology, orientation and dimension:

- Local YBCO/dopant interfacial strain (lattice mismatch, elastic constants) determines the morphology and dimension of the APCs in the YBCO matrix film
- Global substrate/film interfacial strain add additional tuning to the APC landscape (nanorod alignment from c-aligned, to splayed, and to ab-aligned)
- Controlling interplay between local and global strains allows generation of strong and isotropic BZO APCs using three approaches:
- Vicinal + BZO variable concentration
- Y₂O₃+BZO variable concentration
- Low T growth BZO/YBCO + high-T post-anneal