IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2019. Invited presentation 1EOr1C-04 given at ASC 2018, October 28-November 02, 2018, Seattle, (USA).

30-GHz Operation of Datapath for Bit-Parallel, Gate-Level-Pipelined Rapid Single-Flux-Quantum Microprocessors

Masamitsu Tanaka, Nagoya Univ.

Co-authors: Y. Hatanaka¹, Y. Matsui¹, I. Nagaoka¹, K. Ishida², K. Sano¹, T. Yamashita^{1,3}, O. Takatsugu², K. Inoue², A. Fujimaki¹

¹Nagoya Univ. ²Kyushu Univ. ³JST-PRESTO

Acknowledgment

This work was supported by JSPS KAKENHI Grant Numbers JP16H02796, JP18H05211 and JP18H01498; and by VDEC, The University of Tokyo with the collaboration with Cadence Design Systems, Inc. The circuits were fabricated in the CRAVITY of AIST, Japan.

Outline

Background

- Co-design in device/circuit/architecture levels toward throughput-oriented microprocessors
- Demonstration of datapath and design of microprocessor prototype

Summary

Moore's Law

3

RSFQ Microprocessor Projects

- FLUX-1: SUNY Stony Brook, TRW, and JPL
- CORE: Nagoya U., Yokohama National U., Kyoto U.

After M. Dorojevets et al., IEEE Trans. Appl. Supercond. 11 (2001) 326.

Program Execution with 50-GHz Clock

Demonstration of Stored-Program Computing with CORE e2

- Successfully executed several test programs
 - Small-scale programs written within 16 lines
 - ✓ Calculate 1 + 2 + ... + N
 - ✓ Calculate sum of an array
 - Integer division
 - ✓ Find the greatest divisor
 - ✓ Euclidean algorithm (GCD)

Expected Maximum Performance in Bit-Serial Processing (8-bit)

• CORE e2: 333 million-instructions/s (MIPS)

Pipelining execution: up to 6250 MIPS (ideal case)

Outline

Background

- Co-design in device/circuit/architecture levels toward Throughput-oriented microprocessors
- Demonstration of datapath and design of microprocessor prototype

Summary

Revisiting Microarchitecture Design for More Powerful Computing

- Exploring architecture space optimized for RSFQ.
 - Bit-serial, bit-slice vs. bit-parallel processing
 - Depth of pipelines
 - How to eliminate pipeline hazards?

Pipeline Depth vs. Clock Frequency

Eliminating Pipeline Hazards

- Fine-grained multithreading
 - Number of threads = Number of pipeline stages

K. Ishida et al, IPSJ J. 58 (2017)

Results of Architectural Optimization

- Our approaches:
 - Bit-parallel processing
 - Ultra-deep (gate-level) pipelining
 - Fine-grained multithreading
- We started development of throughput-oriented microprocessors with bit-parallel, gate-levelpipelined processing.
 - Challenges: hardware complexity and timing design

Can bit-parallel RSFQ circuits operate at very high clock frequencies?

8-bit ALU Design

- ✓ Target frequency: 50 GHz
- ✓ Gate-level pipelining
- ✓ Functions: ADD, SUB, AND OR, XOR, NOR, etc.
- ✓ Data length: 8 bits

Based on Brent-Kung adder

- Minimum number of logic gates (w/o D flip-flops)
- Sparse wiring tracks
- Small fanouts (Max. 3)
- Maximum logic depth

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2019. Invited presentation 1EOr1C-04 given at ASC 2018, October 28-November 02, 2018, Seattle, (USA).

Demonstration of Gate-Level-Pipelined ALU up to 56 GHz

Results of Architectural Optimization

Our approaches:

Bit-parallel processing

- Ultra-deep (gate-level) pipelining
- Fine-grained multithreading
- We started development of throughput-oriented microprocessors with bit-parallel, gate-levelpipelined processing.
 - Challenges: hardware complexity and timing design

Can bit-parallel RSFQ circuits operate at very high clock frequencies? ...**YES**

Outline

Background

- Co-design in device/circuit/architecture levels toward Throughput-oriented microprocessors
- Demonstration of datapath and design of microprocessor prototype
- Summary

Architectural Design of Gate-Level-Pipelined Microprocessor Prototype

 We designed 4-bit microprocessor prototype with 12-threads support.

K. Ishida et al., HotSPA2018

Fabrication of Datapath Test Circuit

IEEE CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2019. Invited presentation 1EOr1C-04 given at ASC 2018, October 28-November 02, 2018, Seattle, (USA).

Demonstration

High-Frequency Test Results

• We confirmed several successful gate-level-pipelined operations at high clock frequencies up to 31 GHz.

Gate-Level-Pipelined Microprocessor Prototype

 \checkmark 24 pipeline stages ✓ 12 threads, SIMT **Data Memory** ✓ 12 x 10-bit instruction memory \checkmark 4 x 4-bit register file \checkmark 4 x 4-bit data memory SFR Controller ✓ 23,713 JJs ✓ Up to 31.3 GHz @6.9 mW Instruction Memory **ALU & Register File** Clock Gen.

22

4.08 mm

Summary

- We designed and tested an RSFQ 4-bit datapath toward extremely high-throughput, bit-parallel microprocessors.
- Gate-level (ultra-deep) pipelining and fine-grained multithreading will be a promising architectural approach for RSFQ-based high-performance computing.
- We demonstrated high-speed operation up to 31 GHz with power consumption of 2.5 mW. Introduction of energy-efficient techniques, such as LV-RSFQ or ERSFQ, will provide much better efficiency.
- Fabrication and testing of the prototype microprocessors including the designed datapath is ongoing.