DC-SQUID readout with high dynamic range and intrinsic frequency-division multiplexing capability

D. Richter, A. Fleischmann, C. Enss, and S. Kempf

Kirchhoff-Institute for Physics, Heidelberg University, Germany

International Superconducting Electronics Conference ISEC2019 July 28 – August 1, 2019, Riverside, California, USA

dc-SQUID basics

dc-SQUID = magnetic flux to voltage/current converter

- **periodic** $V/I \Phi$ characteristic
- linear flux range: $\Phi_{lin} \sim \Phi_0 / \pi$ \longrightarrow flux-locked loop
- intrinsically 'infinitely' large dynamic range
- very high signal bandwidth: *R/L* ~ 100 GHz

flux-locked loop (FLL)

overall flux in SQUID is kept constant by applying flux feedback compensating variations caused by input signal

flux-locked loop (FLL)

overall flux in SQUID is kept constant by applying flux feedback compensating variations caused by input signal

disadvantages / challenges:

cable delay t_d \rightarrow FLL bandwidth < intrinsic SQUID bandwidth • slew rate $(1-10\Phi_0/\mu s)$ integrator \rightarrow automatic reset for preventing FLL running into saturation slew rate limitation! AD-converter

analog-to-digital converter (ADC)

FLL-output signal has to be compatible with input range of digitizer

signals smaller than the Least Significant Bit (LSB) can not be resolved

analog-to-digital converter (ADC)

dynamic range: ratio between largest and smallest value a quantity takes

DNR =
$$20 \log \left(\frac{2\Phi_{\text{max}}}{\Phi_{\text{noise}} \sqrt{\Delta f}} \right)$$

ADC resolution: number of discrete values over the fullrange of analog values

$$\Delta V_{
m ADC} = rac{V_{
m max} - V_{
m min}}{2^M}$$
 M: ADC resolution (#bits)

example: SQUID with $VS_{\Phi} \simeq 0.1 \,\mu \Phi_0 / \,VHz$, $\Delta f_{\rm FLL} \simeq 10 \,\rm kHz$

$\Phi_{\sf max}$	$1\Phi_0$	$100\Phi_{0}$	$10.000 \Phi_0$
M_{\min}	18 bit	25 bit	31 bit
DNR	186 dB	226 dB	266 dB

high requirements on ADC performance

many possibilities to increase dynamic range...

... e.g. flux counting electronics, digitial SQUIDs, SQIFs, SQUADs, SQUID cascades ...

3 dc-SQUIDs with different input sensitivity + 3 FLL-electronics and 3 digitzier used

flux ramp modulation

application of sawtooth-shaped current signal results in periodic SQUID characteristics

K. W. Lehnert *et al.*, IEEE Trans. Appl. Supercond., **17** (2007) 705
 J. A. B. Mates *et al.*, Appl. Phys. Lett. **92** (2008) 023514
 J. A. B. Mates *et al.*, J. Low Temp. Phys. **167** (2012) 707

flux ramp modulation

application of sawtooth-shaped current signal results in periodic SQUID characteristics

phase of SQUID characteristic linear measure of input signal

dynamic range not limited by ADC resolution + range

K. W. Lehnert *et al.*, IEEE Trans. Appl. Supercond., **17** (2007) 705
J. A. B. Mates *et al.*, Appl. Phys. Lett. **92** (2008) 023514
J. A. B. Mates *et al.*, J. Low Temp. Phys. **167** (2012) 707

experimental setup for proof-of-concept

linearity and dynamic range

application of flux ramp with 1 MHz repetition rate and 4.2 Φ_0 amplitude

measurement of input signal with amplitudes between $100 \,\mathrm{m}\Phi_0$ and $2500 \,\Phi_0$

linearity and dynamic range

application of flux ramp with 1 MHz repetition rate and 4.2 $\Phi_{\rm 0}$ amplitude

measurement of input signal with amplitudes between 100 m Φ_0 and 2500 Φ_0

proof-of-concept: HDFRMux1

flux ramp modulation based four-channel dc-SQUID multiplexer

proof-of-concept: HDFRMux1

flux ramp modulation based four-channel dc-SQUID multiplexer

proof-of-concept: HDFRMux1

M_{mod} adjusted by varying overlap between SQUID washer and modulation coil

HDFRMux1 – modulation demonstration

1 kHz flux ramp repetition rate

different carrier frequencies clearly visible in spectrum of output signal

performance of HDFRMux1 – multiplexing capability

different signal on SQUID inputs, 250 kHz flux ramp repetition rate

successful demonstration of flux ramp modulation based dc-SQUID multiplexing technique

performance of HDFRMux1 – crosstalk

10 kHz sinusoidal signal in SQ2, 250 kHz flux ramp repetition rate

measured crosstalk between channels < 0.5 %

summary and outlook

novel dc-SQUID readout technique

- 'infinitely' large dynamic range
- no slew rate limitations
- MHz frequency domain multiplexing capability

what's next?

- 'optimized' devices
- Further reduce crosstalk in FRM-muxing
- readout noise optimization (preamplifier)
- dedicated readout electronics (FPGA based)

DC-SQUID readout with high dynamic range and intrinsic frequency-division multiplexing capability

D. Richter, A. Fleischmann, C. Enss, and S. Kempf

Kirchhoff-Institute for Physics, Heidelberg University, Germany

International Superconducting Electronics Conference ISEC2019 July 28 – August 1, 2019, Riverside, California, USA

thank you for your attention!